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b. Consider the differential equation %(cos(x)%) — 3d(;$u) + tanh(z/10)u = exp(x) on [0, 1]

with ©(0) =1 and u(1) = —2.

i. write the differentieal equation as 4 (cos(z)9% — 3zu) + tanh(z/10)u = exp(z) inte-
grate over control volume [z, 1,241 | and compute or approximate integrals (note

since tanh(x/10)u is not in the form % ... its integral is approximated in the same

dx
way as that of the right hand side)
duy 4 du_ g tanh(z;/10)u;h = h
(cos(a) ) = By — (cos(@) o — Bl + tanh(a/10)ush = exp(z)

ii. approximate at volume interfaces

Uit1 — Uj Uit1 + Uy U — Uj—1 Ui + Uj—1
(cos(xH%) h 3‘732'—&-% B ) (COS(%—%) h 3%—% B )
+ htanh(z;/10)u; = exp(x;)h

Note, this can be written as:

cos(r; 1) 3 —cos(r; 1) 3 cos(z;,_1) 3

2 2 2
T — §xi+%)ui+1 + (T - §$Z+% - T - 51‘17% + htanh(xz/lo))ul
cos(z,_1) 3
+ (Tz + 5%_%)%‘—1 = exp(wi)h
iii. use boundary condition:
if boundary at grid points: ugp = u(0) = 1 and wu,, = u(l) = —2
Equation derived in 2. holds for ¢ =1...n — 1.
In equation for i = 1 substitute ug =1
In equation for i = n — 1 substitute u, = —2
iv. use boundary condition:

if boundary at volume interface, i.e. between grid points:
Equation derived in 2. holds for:=1...n
To = —%h and 11 =1+ %h fictive points
Since u(0) =1 = “d™ —1 = 4y =2 — uy, substitute this in equation for i = 1
for uyg.
Since u(l) = -2 = % = —2 = uuy1 = —4 — u, substitute this in equation

for i = n for uy41.



d Consider the 2D convection-diffusion equations

du _ Ov _
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u = cos(x),v = sin(x)

on a square [0, 1] x [0, 1] with boundary conditions as depicted.

Give the finite volume discretization of this problem on an equidistant grid equal in
both directions. The boundary conditions should be imposed at the interfaces of control
volumes. The treatment should be in line with how it is done for the 1D Burgers equation.

i. write in divergence form

() en(ipen wn (D)o,
Tis Yj+1

2
ii. First consider flux ¢(z,y) = <Q1 x,y)) = < Y ) +p um> S S
g2(z,y) —uv Uy (@ ys) N
L (Ti=1,Y5) : ‘ (Tit1,95)
We get le divgdQ =0= [(¢,7)dl' =0 0, 3
Hence, with §2; as in picture with equidistant grid R
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Applying midpoint rule to integrals gives
(g2(zisy;1 1) — @22 y; 1)) b+ (2, 1,95) — a2 _1,y;) h =0
where

(—u2+uux)|i+%j = (Q1)i+%j:—( . ]2 zj)2+u i Jh i

01 (21 1,95)

Wij+1 + Ugj Vij41 + Uij) " Muij+1 — Ujj

a2(wis ) = (—uv+ Nuy)‘ij-i'% = (@) = (= 2
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(@2(ziyy;1 1) — @220y, 1)) b+ (2, 1,95) — @iz 1,9;) h =0
iii. An anologous approach for the other equation,

where o (z,y) v v
ie. With(j'(:c,y):il ’ )z >+u()x> Wit Wis Vints + Vis Vit — Vs
q1 (xi+%7yj) = @2—(@5@@ ,uvac) = (Q1 yigj — _( 1417 ij Vit-1j Z]) +u i+17 ]

A
gives e 2 2 h
_ 2 _ (Vij+1 Vi Vij+1 — Vij
qQ(xiuij,-%) =(—v"+ ny)‘ij-&-% = (Q2>Z‘j+% = —( 9 )"+ w h

iv. Boundary conditions: assume boundary at interface volume, i.e. in between grid

points.| The picture shows the control volumes near ¥ = 0 and z = (1. It is|analogous
near y =0rand g =1
J J
o0 0 o 1
i=0 i=1 1=n 1=n-+1

Consider the equations from part ii.

Boundary conditions at = 0 and z = 1 are only relevant for ¢y, for go the boundary
conditions at y = 0 and y = 1 are relevant.

Consider boundary = 0. For ¢ = 1, i.e. for the control volume around (z1,y;):

o _ o ugjtugg Uyt Uggo ugj — 2u1j + Uy
(ar)g; — (o) = (DM () | e 2
From the boundary condition u(0,y) = 1 = % =1 = wy =2—u;

Substitute ug; = 2 — uy; in the above equation (part of which will then go to the
right hand side of the above equation).

Consider boundary « = 1. For i = n, i.e. for the control volume around (zy,y;) we
have

=0

Up+15 + Unj Upj + Up—1; Up+1j — 2Unj + Un—1;
n+1j n])Q_(_( nj n 1])2)4-,& n+1j nj n—1j

For the first two terms we do not want to use the boundary condition, because for
this term the boundary condition at x = 0 suffices. Therefor, we replace these terms
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by a one-sided difference, this gives

o 2 Upj + Un—15\9 Un+15 — 2unj + Un—1j -
@)y~ @)y =2 0y (] ety =2 s g

In the last term, the diffusion term, we will use the boundary condition g—g(l,y) =
0 = W = 0, hence we can substitute u,1; = un;.
v. Consider again the equations from part ii., but now the equation for g
For ¢o the boundary conditions at y = 0 and y = 1 are relevant. For j = 1, i.e. for
the control volume around (x;,y1):
w2 — 2u41 + Uio

)+ w z =0

U2 + Uil V32 + Vi1
2 2

~ Uq1 + Uip Vi1 + Vio
2 2

(@)ys — (@2)3 = —( )~
From the boundary conditions: u(z,0) = cos(z) = oML = cos(ih) = w =
2cos(ih) — u;1 and v(z,0) = sin(z) = Y0¥ = gin(ih) = v = 2sin(ih) — vy
Substitute u;g = 2cos(ih) — u;1 and vy = 2sin(ih) — v;1 (which will then partly go

to the right hand side of the above equation) in the above equation.

Consider boundary y = 1. For j = n, i.e. for the control volume around (z;,y,) we

have
_ Uing1 + Uin Ving1 + Vin Uin + Uin—1 Vin + Vin—1
(@2)in+1 = (@2)in-1 = ~(—— 5 )~ ( 5 5 )
. _ 2 . P
+ qum—l-l Uin + Uin—1 —0

h

For the first two terms we do not want to use the boundary condition, because for
this term the boundary condition at y = 0 suffices. Therefor, we replace these terms
by a one-sided difference, this gives

_unj + Un—15 Unj + Un—1j )]
2 2
Uint+1 — 2Uin + Uin—1
h

(Q2)m+% - (Q2)m_% = 2[ — uinVin — (

=0

In the last term, the diffusion term, we will use the boundary condition %Z(x, 1) =

0 = w = 0, hence we can substitute w11 = Usn.

vi. analogous approach for the equations of part iii.
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