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here z¢ and 1 are fictive points

1. second-order finite difference scheme:
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for internal grid points:

Grid 1: fori=1...n—1

Grid 2: fori=1...n

. Boundary conditions:

Grid 1: ug =1 and u,, = —2
use this in the finite difference scheme when ¢ = 1 and ¢ = n — 1
respectively

Grid 2: 130 =1 = wy =2 —uy,
use this expression for ug in the finite difference scheme when ¢ = 1

Un+Un4+1 __ _
—n_nts 2"+ = -2 = Upt1 =—4 — up,

use this expression for u,+; in the finite difference scheme when i = n

. Discretization of first term in two steps, first central difference discretization (hence

second-order) of first order derivative using i + 3 and i — 3

§.
First step:
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Second step gives final finite difference scheme:
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for internal grid points:
Grid 1: fori=1...n—1
Grid 2: fori=1...n

2. boundary conditions as in part a.

c. We assume a grid in both x- and y- direction with grid size h, with rid points (x;,y;)
given by
Grid 1: ; =ihfori=0...n,y; =jhfor j=0...n with h=1/n
Grid 2: ;= (i —3)hfori=1...n,y; = (j— 3)hfor j=1...n with h=1/n.

For your own understanding, draw a square with grid and position of grid points for both
Grid 1 and Grid 2 (analogously to the drawings of the two types of the 1D grid given at
the beginning of the exercise)

1. The separate terms give:
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for internal grid points:
Grid1l: fori=1...n—1land j=1...n—1
Grid 2: fori=1...nand j=1...n

2. Boundary conditions
For your own understanding you can add the continuous boundary conditions to the
sides of the squares showing the grid and grid points of Grid 1 and Grid 2, you drew
before.

Grid 1:

uw(0,y) =1 = up; =1
use this in the finite difference scheme when 7 =1
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d.

u(z,0) = cos(z) = wjo = cos(z;)
use this in the finite difference scheme when j =1

because u is not known at x = 1 and y = 1 (due to the Neumann boundary condi-
tions), we need to compute u,; and wu;, as well

%(1,?;) =0 = % =0 = Un+1j = Un—1j
we introduced the fictive points x,1; to obtain second order accuracy in
treatment
of boundary condition and solution
use the finite difference scheme given in 1. for ¢ = n as well, and use the just
derived formula for w,y1; in the scheme for ¢ = n

d _ Wint1—Uin—1 __ _
OTZ(»”U’ 1) —‘0 = +T.— 0 :> Uin+1 = Uin—1 ‘
we introduced the fictive points x;,+1 to obtain second order accuracy in treat-

ment
of boundary condition and solution
use the finite difference scheme given in 1. for j = n as well, and use the just
derived formula for u;,+1 in the scheme for j =n

Grid 2:

u(0,y) =1 = LJ’;"” =1 = wugj =2 —uyj

use this formula for ug; in the finite difference scheme given in 1. when i =1
u(z,0) = cos(z) = 20dMl — cos(z;) = wio = 2cos(z;) — un

use this formula for u;g in the finite difference scheme given in 1. when j =1

Up+15j—Unj

W(l,y)=0 = " =0 = Upiy) = Uy

use this formula for u,41; in the finite difference scheme given in 1. when
1=n
Z—Z(m, 1)=0 = 20 =0 = ujpp = Ui

use this formula for u;, 1 in the finite difference scheme given in 1. when j =n

1. Grid as in part c.

2. Finite difference scheme
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3. Treatment of boundary conditions analogous approach as in part c.

Page 3



