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Grid 1: xi = ih for i = 0 . . . n with h = 1/n

0 = x0 x1 x2 xn−1 xn = 1

Grid 2: xi = (i− 1
2)h for i = 1 . . . n with h = 1/n

0x0 x1 x2 xn−1 xn xn+11

here x0 and xn+1 are fictive points

a. 1. second-order finite difference scheme:
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for internal grid points:
Grid 1: for i = 1 . . . n− 1
Grid 2: for i = 1 . . . n

2. Boundary conditions:
Grid 1: u0 = 1 and un = −2

use this in the finite difference scheme when i = 1 and i = n − 1
respectively

Grid 2: u1+u0
2 = 1 ⇒ u0 = 2− u1,

use this expression for u0 in the finite difference scheme when i = 1

un+un+1

2 = −2 ⇒ un+1 = −4− un,
use this expression for un+1 in the finite difference scheme when i = n

b. 1. Discretization of first term in two steps, first central difference discretization (hence
second-order) of first order derivative using i+ 1

2 and i− 1
2 .

First step:
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Second step gives final finite difference scheme:
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for internal grid points:
Grid 1: for i = 1 . . . n− 1
Grid 2: for i = 1 . . . n

2. boundary conditions as in part a.

c. We assume a grid in both x- and y- direction with grid size h, with rid points (xi, yj)
given by
Grid 1: xi = ih for i = 0 . . . n, yj = jh for j = 0 . . . n with h = 1/n
Grid 2: xi = (i− 1

2)h for i = 1 . . . n, yj = (j − 1
2)h for j = 1 . . . n with h = 1/n.

For your own understanding, draw a square with grid and position of grid points for both
Grid 1 and Grid 2 (analogously to the drawings of the two types of the 1D grid given at
the beginning of the exercise)

1. The separate terms give:
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for internal grid points:
Grid 1: for i = 1 . . . n− 1 and j = 1 . . . n− 1
Grid 2: for i = 1 . . . n and j = 1 . . . n

2. Boundary conditions
For your own understanding you can add the continuous boundary conditions to the
sides of the squares showing the grid and grid points of Grid 1 and Grid 2, you drew
before.

Grid 1:

u(0, y) = 1 ⇒ u0j = 1
use this in the finite difference scheme when i = 1
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u(x, 0) = cos(x) ⇒ ui0 = cos(xi)
use this in the finite difference scheme when j = 1

because u is not known at x = 1 and y = 1 (due to the Neumann boundary condi-
tions), we need to compute unj and uin as well

du
dx(1, y) = 0 ⇒ un+1j−un−1j

2h = 0 ⇒ un+1j = un−1j

we introduced the fictive points xn+1j to obtain second order accuracy in
treatment

of boundary condition and solution
use the finite difference scheme given in 1. for i = n as well, and use the just
derived formula for un+1j in the scheme for i = n

du
dy (x, 1) = 0 ⇒ uin+1−uin−1

2h = 0 ⇒ uin+1 = uin−1

we introduced the fictive points xin+1 to obtain second order accuracy in treat-
ment

of boundary condition and solution
use the finite difference scheme given in 1. for j = n as well, and use the just
derived formula for uin+1 in the scheme for j = n

Grid 2:

u(0, y) = 1 ⇒ u0j+u1j

2 = 1 ⇒ u0j = 2− u1j
use this formula for u0j in the finite difference scheme given in 1. when i = 1

u(x, 0) = cos(x) ⇒ ui0+ui1
2 = cos(xi) ⇒ ui0 = 2 cos(xi)− ui1

use this formula for ui0 in the finite difference scheme given in 1. when j = 1

du
dx(1, y) = 0 ⇒ un+1j−unj

h = 0 ⇒ un+1j = unj
use this formula for un+1j in the finite difference scheme given in 1. when

i = n

du
dy (x, 1) = 0 ⇒ uin+1−uin

h = 0 ⇒ uin+1 = uin
use this formula for uin+1 in the finite difference scheme given in 1. when j = n

d. 1. Grid as in part c.

2. Finite difference scheme
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3. Treatment of boundary conditions analogous approach as in part c.
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