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For stability of time integration method consider test equation du
dt = λu

a. Forward Euler un+1 = un + ∆tλun. Show that for Forward Euler for stability we need
that |1 + ∆tλ| < 1. If λ is purely imaginary and λ 6= 0 we have |1 + ∆tiIm(λ)| =√

1 + (∆tIm(λ))2 > 1 for all ∆t > 0. Hence, method unstable for problems with only
purely imaginary eigenvalues (un = (1 + ∆λ)nu0 will not go to zero for n ⇒ ∞).
Note: setting z = ∆tλ, we need |1 + z| < 1, i.e z (complex number, i.e. x+ iy), z inside
disk with center (x, y) = (−1, 0) and radius 1.

b. Backward Euler: un+1 = un + ∆tλun+1. Hence (1−∆tλ)un+1 = un and method stable if
| 1
1−∆tλ | < 1. Setting z = ∆tλ, we see that we need |1−z| > 1. Hence z (complex number,

i.e. x+ iy), outside disk with center (x, y) = (1, 0) and radius 1).

c. Note: method is A-stable if the region of absolute stability contains the half plain Re(z) <
0.
Backward Euler and Trapezoidal method/Crank-Nicolson method have Re(z) < 0 in their
region of absolute stability, and are hence A-stable.
BDF(k) is A-stable only for k = 1 (backward Euler) and k = 2.
(see for instance https://en.wikipedia.org/wiki/Backward differentiation formula where
the pink regions are the regions of stability)

For

∂u

∂t
= a

∂2u

∂x2
+ f(t, x) a > 0, t > 0, 0 < x < 1

u(x, 0) = g(x), u(0, t) = u(1, t) = 0

we get

dU

dt
= AU + f̂ , U(0) = ĝ

where A is given by formula (2.69) of the reader and its eigenvalues are real and in the
interval [−4a/h2, 0) (see formula (2.77) and below in the Lecture Notes). From the regions
of stability of the BDF(k) methods, we see that all these methods are stable for z = ∆tλ
real and negative. Hence, non of the BDF(k) methods for the time integration, will give
a restriction on the time time ∆t
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d. Trapezoidal method/Crank-Nicolson method: un+1 = un + ∆t
2

[
λun + λun+1

]
. Show that

this can be written as un+1 =
1+ 1

2
∆tλ

1− 1
2

∆tλ
un. Hence, we need that the amplification factor

satisfies |ρ(z)| = |1+ 1
2
z

1− 1
2
z
| < 1 and hence |2− z| > |2 + z| which gives Re(z) < 0.

d. The amplification factor ρ(z) of the trapezoidal method for |z| → ∞ is

lim
|z| → ∞

1 + 1
2z

1− 1
2z

= lim
|z| → ∞

1
z + 1

2
1
z −

1
2

= −1.

Note: For the test equation we have du
dt = λu ⇒ u(t) = exp(λt)u(0) ⇒ u(tn+1) =

u(tn + ∆t) = exp(λ(tn + ∆t))u(tn) = exp(z)u(tn). Hence for the continuous solution we
have amplification factor ez. We have exp(z) = exp(Re(z)) exp(iIm(z) and see that the
behaviour of this amplification factor for |z| → ∞ is completely different of that of the
trapezoidal method.
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