Book: Bifurcation Analysis of Fluid Flows
 Authors: Fred W. Wubs and Henk A. Dijkstra
 Chapter: 4, Exercise: 4.17
 Exercise author: G. Tiesinga
 Version: 1

For stability of time integration method consider test equation $\frac{d u}{d t}=\lambda u$
a. Forward Euler $u^{n+1}=u^{n}+\Delta t \lambda u^{n}$. Show that for Forward Euler for stability we need that $|1+\Delta t \lambda|<1$. If λ is purely imaginary and $\lambda \neq 0$ we have $|1+\Delta t i \operatorname{Im}(\lambda)|=$ $\sqrt{1+(\Delta t \operatorname{Im}(\lambda))^{2}}>1$ for all $\Delta t>0$. Hence, method unstable for problems with only purely imaginary eigenvalues $\left(u^{n}=(1+\Delta \lambda)^{n} u_{0}\right.$ will not go to zero for $\left.n \Rightarrow \infty\right)$.
Note: setting $z=\Delta t \lambda$, we need $|1+z|<1$, i.e z (complex number, i.e. $x+i y$), z inside disk with center $(x, y)=(-1,0)$ and radius 1 .
b. Backward Euler: $u^{n+1}=u^{n}+\Delta t \lambda u^{n+1}$. Hence $(1-\Delta t \lambda) u^{n+1}=u^{n}$ and method stable if $\left|\frac{1}{1-\Delta t \lambda}\right|<1$. Setting $z=\Delta t \lambda$, we see that we need $|1-z|>1$. Hence z (complex number, i.e. $x+i y$), outside disk with center $(x, y)=(1,0)$ and radius 1$)$.
c. Note: method is A-stable if the region of absolute stability contains the half plain $\operatorname{Re}(z)<$ 0.

Backward Euler and Trapezoidal method/Crank-Nicolson method have $\operatorname{Re}(z)<0$ in their region of absolute stability, and are hence A-stable.
$\operatorname{BDF}(\mathrm{k})$ is A-stable only for $k=1$ (backward Euler) and $k=2$.
(see for instance https://en.wikipedia.org/wiki/Backward_differentiation_formula where the pink regions are the regions of stability)

For

$$
\begin{aligned}
& \frac{\partial u}{\partial t}=a \frac{\partial^{2} u}{\partial x^{2}}+f(t, x) \quad a>0, t>0,0<x<1 \\
& u(x, 0)=g(x), \quad u(0, t)=u(1, t)=0
\end{aligned}
$$

we get

$$
\frac{d U}{d t}=A U+\hat{f}, \quad U(0)=\hat{g}
$$

where A is given by formula (2.69) of the reader and its eigenvalues are real and in the interval $\left[-4 a / h^{2}, 0\right)$ (see formula (2.77) and below in the Lecture Notes). From the regions of stability of the $\operatorname{BDF}(\mathrm{k})$ methods, we see that all these methods are stable for $z=\Delta t \lambda$ real and negative. Hence, non of the $\operatorname{BDF}(\mathrm{k})$ methods for the time integration, will give a restriction on the time time Δt
d. Trapezoidal method/Crank-Nicolson method: $u^{n+1}=u^{n}+\frac{\Delta t}{2}\left[\lambda u^{n}+\lambda u^{n+1}\right]$. Show that this can be written as $u^{n+1}=\frac{1+\frac{1}{2} \Delta t \lambda}{1-\frac{1}{2} \Delta t \lambda} u^{n}$. Hence, we need that the amplification factor satisfies $|\rho(z)|=\left|\frac{1+\frac{1}{2} z}{1-\frac{1}{2} z}\right|<1$ and hence $|2-z|>|2+z|$ which gives $\operatorname{Re}(z)<0$.
d. The amplification factor $\rho(z)$ of the trapezoidal method for $|z| \rightarrow \infty$ is

$$
\lim _{|z| \rightarrow \infty} \frac{1+\frac{1}{2} z}{1-\frac{1}{2} z}=\lim _{|z| \rightarrow \infty} \frac{\frac{1}{z}+\frac{1}{2}}{\frac{1}{z}-\frac{1}{2}}=-1 .
$$

Note: For the test equation we have $\frac{d u}{d t}=\lambda u \Rightarrow u(t)=\exp (\lambda t) u(0) \Rightarrow u\left(t_{n+1}\right)=$ $u\left(t_{n}+\Delta t\right)=\exp \left(\lambda\left(t_{n}+\Delta t\right)\right) u\left(t_{n}\right)=\exp (z) u\left(t_{n}\right)$. Hence for the continuous solution we have amplification factor e^{z}. We have $\exp (z)=\exp (\operatorname{Re}(z)) \exp (\operatorname{Im}(z)$ and see that the behaviour of this amplification factor for $|z| \rightarrow \infty$ is completely different of that of the trapezoidal method.

