Book: Bifurcation Analysis of Fluid Flows
 Authors: Fred W. Wubs and Henk A. Dijkstra
 Chapter: 4, Exercise: 4.16
 Exercise author: G. Tiesinga
 Version: 1

Apply θ-method to $M \frac{d}{d t} c(t)=A c(t)+\hat{f}(t), c(0)=c_{0}$, where $c(t)$ is a vector (equation 2.72 of the lecture notes)
Note: This ODE stems from applying the FEM to $\frac{\partial}{\partial t} u(t, x)=\mu \frac{\partial^{2}}{\partial t^{2}} u(t, x)+f(t, x)$, i.e. using the Galerkin approach and setting $u(t, x)=\sum c_{i}(t) \phi_{i}(x)$. The matrix A does not depend on t and is given by $A_{i j}=\mu\left(\phi_{i}^{\prime}(x), \phi_{j}^{\prime}(x)\right)=\mu \int_{0}^{1} \phi_{i}^{\prime}(x), \phi_{j}^{\prime}(x) d x$. Furthermore, \hat{f} is given by $\hat{f}_{i}=\left(f(t, x), \phi_{i}(x)\right)=\int_{0}^{1} f(t, x) \phi_{i}(x) d x$.
Applying the θ-method gives

$$
\begin{aligned}
& M c^{(n+1)}=M c^{(n)}+\Delta t\left[(1-\theta)\left(A c^{(n)}+\hat{f}\left(t_{n}\right)\right)+\theta\left(A c^{(n+1)}+\hat{f}\left(t_{n+1}\right)\right)\right] \\
\Rightarrow & (M-\theta \Delta t A) c^{(n+1)}=M c^{(n)}+\Delta t\left[(1-\theta) A c^{(n)}+(1-\theta) \hat{f}\left(t_{n}\right)+\theta \hat{f}\left(t_{n+1}\right)\right]
\end{aligned}
$$

with $c^{(0)}=c_{0}$.

