Book: Bifurcation Analysis of Fluid Flows

Authors: Fred W. Wubs and Henk A. Dijkstra

Chapter: 4, Exercise: 4.12

Exercise author: G. Tiesinga

Version: 1

1. Grid on [0,1], grid size $h=\frac{1}{n}$, i.e. $x_i=ih$. Consider one element x_i,x_{i+1} and consider on that element p-th order polynomial interpolation of f, i.e. $q_p(x) =$ $(x-y_0)(x-y_1)\dots(x-y_p)$, with $y_j=x_i+jm$ where m=h/p.

2. We have on element $[x_i, x_{i+1}]$ that $f(x) = q_p(x) + (x - y_0)(x - y_1) \dots (x - y_p) \frac{f^{p+1}(\xi(x))}{(p+1)!}$ The error of the piecewise interpolating polynomial $\Pi_{\mathcal{V}_n} f$ on [0,1] is

$$||f - \Pi_{\mathcal{V}_n} f|| = \sqrt{\sum_{i=0}^{n-1} \int_{ih}^{(i+1)h} (f(x) - \Pi_{\mathcal{V}_n} f)^2 dx}$$
 (**)

3. First consider error on 1 element

$$\int_{ih}^{(i+1)h} (f(x) - \Pi_{\mathcal{V}_n} f)^2 dx = \int_{ih}^{(i+1)h} (x - y_0)^2 (x - y_1)^2 \dots (x - y_p)^2 (\frac{f^{p+1}(\xi(x))}{(p+1)!})^2 dx
\leq \max_{x \in [x_i, x_{i+1}]} ((\frac{f^{p+1}(\xi(x))}{(p+1)!}|)^2) \int_{ih}^{(i+1)h} (x - y_0)^2 (x - y_1)^2 \dots (x - y_p)^2 \dots (x - y_p)^2 \dots (x - y_p)^2 (x - y_1)^2 \dots (x - y_p)^2 \dots ($$

 $(y_p)^2 dx$

Using $x = x_i + sh$, with $s \in [0, 1]$, show dx = hds and $(x - y_j) = (s - \frac{j}{p})h$, and $\int_{ih}^{(i+1)h} (x-y_0)^2 (x-y_1)^2 \dots (x-y_p)^2 dx = h^{2p+3} \left(\int_0^1 \prod_{j=0}^p (s-\frac{j}{p}) ds \right)^2$

Note $\int_0^1 \prod_{i=0}^p (s-\frac{j}{n}) ds$ does not depend on h

4. Now return to (**), the error over the whole interval [0,1]: argue that

$$\begin{split} \|f - \Pi_{\mathcal{V}_n} f\| &\leq \sqrt{h^{2p+3} \sum_{i=0}^{n-1} \max_{x \in [x_i, x_{i+1}]} ((\frac{f^{p+1}(\xi(x))}{(p+1)!})^2) \int_0^1 \prod_{j=0}^p (s - \frac{j}{p})^2 ds} \\ &\leq h^{p+1} \max_{x \in [0,1]} (|\frac{f^{p+1}(\xi(x))}{(p+1)!}|) \sqrt{nh} \int_0^1 \prod_{j=0}^p (s - \frac{j}{p})^2 ds} \\ &= h^{p+1} \max_{x \in [0,1]} (|\frac{f^{p+1}(\xi(x))}{(p+1)!}|) \sqrt{c_n} = O(h^{p+1}) \end{split}$$

where $c_n = \int_0^1 \prod_{i=0}^p (s-\frac{j}{p})^2 ds$. You can show $c_n \leq \int_0^1 1 ds = 1$

- 5. From Corollary 4.1 we know that the error of the best approximation is bounded by the error of the interpolation polynomial: $||f - f_{\mathcal{V}}||_{H^0} = ||f - f_{\mathcal{V}}|| \le \frac{M}{c} ||f - \Pi_{\mathcal{V}} f||_{H^0} =$ $O(h^{p+1})$
- 1. Sobolev norm $||f||_{H^k} = \sqrt{||f||^2 + ||\frac{df}{dx}||^2 + \ldots + ||\frac{d^kf}{dx^k}||^2}$ We have $f(x) = q_p(x) + (\prod_{j=0}^p (x - y_j)) \frac{f^{p+1}(\xi(x))}{(p+1)!}$ and from a. $||f||^2 = (O(h^{p+1}))^2$ Argue $\frac{d}{dx}(f(x) - q_p(x)) = \frac{f^{p+1}(\xi(x))}{(p+1)!} \frac{d}{dx} (\prod_{j=0}^{p} (x - y_j)) + \prod_{j=0}^{p} (x - y_j) \frac{d}{dx} (\frac{f^{p+1}(\xi(x))}{(p+1)!})$

and hence $\frac{d^k}{dx^k}(f(x)-q_p(x))=\frac{f^{p+1}(\xi(x))}{(p+1)!}\frac{d^k}{dx^k}(\prod_{j=0}^p(x-y_j))+\dots$ where we only mentioned the term which has lowest power of h (i.e. worst case scenario for order of error).

- 2. As before, using $x=x_i+sh$, with $s\in[0,1]$, show dx=hds, $\frac{d^k}{dx^k}=\frac{1}{h^k}\frac{d^k}{ds^k}$ and $\frac{d^k}{dx^k}(\prod_{j=0}^p(x-y_j))=h^{p+1-k}\frac{d^k}{ds^k}\prod_{j=0}^p(s-\frac{j}{p})$ and argue analogously as in part a. by considering the error first at one element and then at the whole interval [0,1] to obtain $\|f-\Pi_{\mathcal{V}}f\|_{H^k}=O(h^{p+1-k})$
- 3. Finally argue that $||f f_{\mathcal{V}}||_{H^k} = O(h^{p+1-k})$