Book: Bifurcation Analysis of Fluid Flows Authors: Fred W. Wubs and Henk A. Dijkstra
 Chapter: 4, Exercise: 4.11
 Exercise author: G. Tiesinga Version: 1

Apply FEM with piecewise linear base functions to the cases of Exercise 3.15a. For application to 3.15 a. 1 we have currently only a handwritten document inserted at the end of the document. (Note that Exc. 2.11 should be Exc 4.11 and 1.15 should be 3.15 .) This provides us with a matrix A and a right-hand side b. For the case below, we will indicate how A and b need to be adjusted.
a. 2 1. matrix A does not change
2. the right hand side b changes: instead of computing each time $\left(\phi, x^{2}\right)$ we need to compute $\left(\phi, x^{2}-(1+x)(1+4)\right)$
3. at the end $\tilde{u}=\sum_{i=1}^{n-1} c_{i} \phi_{i}(x)$ and $u=1+4 x+\sum_{i=1}^{n-1} c_{i} \phi_{i}(x)$
a. 3 1. We have: $a(v, u)$ as before. But now, $u(0)$ is not known. Hence, also use ϕ_{0} and c_{0}, i.e. $u(x)=\sum_{i=0}^{n-1} c_{i} \phi_{i}(x)$. The size of the matrix A will not be $(n-1) \times(n-1)$ as in part a. 1 but $n \times n$. It will have one additional row and one additional column at the beginning (the rest of the matrix is as before), containing (ϕ_{0}, ϕ_{j}) for $j=0 \ldots n-1$ and (ϕ_{i}, ϕ_{0}) for $i=0 \ldots n-1$. Most of these elements, as before, will be 0 .
2. We have: $F(v)=\left(v, x^{2}\right)-3 v(0)$. Analogously to A, we now obtain b of length n instead of $n-1$. The additional element is at the top of vector b, namely the element $\left(\phi_{0}, x^{2}\right)$.
3. In addition, from the in this way obtained vector b we should substract $3 \mathrm{v}(0)$, but since $b_{i}=F\left(\phi_{i}\right)$ and $\phi_{0}(0)=1$ but for all others we have $\phi_{i}(0)=0$, we need to substract 3 only from the first element of b.
a. 4 as in a.3, but for b use $F(v)=\left(v, x^{2}-5(1+x)\right)-3 v(0)$, i.e. in the inner product computations take $x^{2}-5(1+x)$ and not x^{2}
a. 5 as in a.3, but now we have in $a(v, u)$ an additional term $-9 v(0) u(0)$, which only changes $a\left(\phi_{0}, \phi_{0}\right)$ since $\phi_{0}(0)=1$ but for all others we have $\phi_{i}(0)=0$. Hence substract 9 from the first diagonal element of $a(v, u)$
a. 6 see a. 5 but now we have in $a(v, u)$ an additional term $+9 v(0) u(0)$.

Exc 2.11
consider 1.15 ali)

$$
\begin{aligned}
& a(v, u)=\left(\frac{d v}{d x}, \frac{d u}{d x}\right)+(v,(1+x) u) \\
& F(v)=\left(v, x^{2}\right) \\
& V=\left\{v \in H^{\prime}[0,1] \mid v(0)=v(1)=0\right\}
\end{aligned}
$$

use: shape function degree 1 $\quad x_{0}=0, x_{n}=1 \quad l=\frac{1}{n} \quad \begin{array}{ll}x_{i}=i h\end{array}$

$$
A \vec{c}=b \quad u(x)=\sum_{i=1}^{n-1} c \phi_{i}(x)
$$

$\phi_{i}(x)$ hear piecewise

$$
\begin{array}{rlrl}
\phi_{i}\left(x_{j}\right) & =1 & i=j \\
& =0 & i \neq j
\end{array}
$$

$$
A_{i j}=a\left(\phi_{i}, \phi_{j}\right)
$$

$$
\begin{gathered}
{\left[\begin{array}{ll}
\left(\phi_{i}^{\prime}, \phi_{i}^{\prime}\right)_{i} & \left(\phi_{i}^{\prime}, \phi_{i+1}^{\prime}\right)_{i} \\
\left(\phi_{i+1}^{\prime} \phi_{i}^{\prime}\right)_{i} & \left(\phi_{i+1}^{\prime}, \phi_{i+1}^{\prime}\right)_{i}
\end{array}\right]} \\
+\left[\begin{array}{cc}
\left(\phi_{i},(1+x) \phi_{i}\right)_{i} & \left(\phi_{i},(1+x) \phi_{i+1}\right)_{i} \\
\left(\phi_{i+1},(1+x) \phi_{i}\right)_{i} & \left(\phi_{i+1}(1+x) \phi_{i+1}\right)_{i}
\end{array}\right]
\end{gathered}
$$

element i
on $\left[x_{i}, x_{i+1}\right]$:

$$
\begin{aligned}
& \phi_{i,},=\frac{i}{x_{i+1}-x_{i}}\left(x-x_{i}\right)=\frac{1}{h}\left(x-x_{i}\right) \\
& \phi_{i+1}^{\prime}=\frac{1}{l} \\
& \left.\phi_{i}\right|_{\dot{0}}=\frac{1}{x_{i+1}-x_{i}}\left(x_{i+1}-x\right)=\frac{1}{h}\left(x_{i+1}-x^{x_{i+1}} \quad \phi_{i}^{\prime}=-\frac{1}{h}\right. \\
& \left(\phi_{i}^{\prime}, \phi_{i}^{\prime}\right)_{i}=\int_{x_{i}}^{1+1}\left(-\frac{1}{h}\right)^{2} d x=\frac{1}{R} \\
& \left(\phi_{i+1}^{\prime}, \phi_{i}\right)_{i}=\int_{x_{i} .}^{x_{i+1}} \frac{1}{h} \cdot-\frac{1}{h} d x=-\frac{1}{h} \\
& \left(\phi_{i},(1+x) \phi_{i}\right)_{i}=\int_{x_{i}}^{x_{i+1}} \frac{1}{h}\left(x_{i+1}-x\right)(1+x) \cdot \frac{1}{h}\left(x_{i+1}-x\right) d x=\ldots . \\
& =+\frac{1}{h^{2}} \cdot+\frac{1}{12} h^{3}\left(3 x_{i}+x_{i+1}+4\right) \\
& +\frac{1}{12} h(4 i h+h+4)=+\frac{4 i+1}{12} h^{2}+\frac{4}{3} h=+\frac{1}{12} h(3 i h+(i+1) h+4)
\end{aligned}
$$

\rightarrow solve $A \vec{c}=b$

$$
\Rightarrow u(x)=\sum_{i=1}^{n-1} c_{i} \phi_{i}(x)
$$

$$
\begin{aligned}
& \left.F\left(\phi_{i}\right)\right|_{i}=\binom{\left(\phi_{i}, x^{2}\right)_{i}}{\left(\phi_{i+1}, x^{2}\right)_{i}}=\binom{\int_{x_{i}+i 1}^{x_{i}}\left(x_{h}\left(x_{i+1}-x\right) x^{2} d x\right.}{\int_{x_{i}+1}^{2} / 1 / g\left(x-x_{i}\right) x^{2} d x}=\binom{R_{1 / 2}^{2}\left(6 i^{2}+4 i+1\right)}{h^{2} / 12\left(6 i^{2}+8 i+3\right)}
\end{aligned}
$$

$$
\begin{aligned}
& \left(\phi_{i+1},(1+x) \phi_{i}+1\right)_{i}=\int_{x_{i}}^{x_{i+1}} \frac{1}{h^{2}}\left(x-x_{i}\right)(1+x)\left(x-x_{i}\right) d x \\
& =\frac{1}{h^{2}} \frac{1}{12} h^{3}(4 i h+3 h+4)=\frac{h^{2}}{12}(4 i+3)+\frac{1}{3} h \\
& \left(\phi_{i+1},(1+x) \phi_{i}\right)_{i}=\int_{x_{i}}^{x_{i+1}}-\frac{1}{h^{2}}\left(x-x_{i}\right)(1+x)\left(x_{i+1}-x\right) d x \\
& =-\frac{1}{h^{2}} \frac{h^{3}}{12}(2 h i+h+2)=-\frac{h^{2}}{12}(2 i+1)-\frac{1}{6} h \\
& \Rightarrow i=0 \quad \frac{1}{h}\left[\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right]+\left[\begin{array}{cc}
h^{2} / 12+h / 3 & -h^{2} / 12-h / 6 \\
-h^{2} / 12-1 / 6 h & {\left[3 h^{2} / 12+\frac{1}{3} h\right]}
\end{array}\right] \\
& i=1 \quad \frac{1}{h}\left[\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right]+\left[\begin{array}{cc}
5 / 2 h^{2}+h / 3 & -3 / 2 h^{2}-1 / 6 h \\
-3 / 2 h^{2}-h / 6 & 17 / 2 h^{2}+1 / 3 h
\end{array}\right] \\
& i=2 \quad 1 / h\left[\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right]+\left[\begin{array}{cc}
9 / 12 h^{2}+h / 3 & -5 / 12 h^{2}-1 / 6 h \\
-5 / 12 h^{2}-h / 6 & 11 / 12 h^{2}+1 / 3 h
\end{array}\right]
\end{aligned}
$$

