Book: Bifurcation Analysis of Fluid Flows
 Authors: Fred W. Wubs and Henk A. Dijkstra
 Chapter: 3, Exercise: 3.9 Exercise author: G. Tiesinga
 Version: 1

Adjoint \mathcal{A}^{*} of \mathcal{A} is s.t. $(v, \mathcal{A} u)=\left(\mathcal{A}^{*} v, u\right) \quad \forall u, v$
a. 1. use partial integration to show $\left(v, \frac{d}{d x} u\right)=v(1) u(1)-v(0) u(0)+\left(-\frac{d}{d x} v, u\right)$
2. Since we are without boundary conditions $u(0), u(1), v(0), v(1)$ are not known. Hence, the adjoint is $-\frac{d}{d x}$ on the domain and +1 at $x=1$ (as can be seen from the term $+(v u)(1))$ and -1 at $x=0$.
b. 1. use twice partial integration to show $\left(v, \frac{d^{2}}{d x^{2}} u\right)=\left.\left(v \frac{d u}{d x}-\frac{d v}{d x} u\right)\right|_{0} ^{1}+\left(\frac{d^{2}}{d x^{2}} v, u\right)$. Hence the adjoint is $\frac{d^{2}}{d x^{2}}$ on the domain and the other term represents the adjoint on the boundary
2. rewrite as $\left(v, \frac{d^{2}}{d x^{2}} u\right)-\left.v \frac{d u}{d x}\right|_{0} ^{1}=\left(\frac{d^{2}}{d x^{2}} v, u\right)-\left.\frac{d v}{d x} u\right|_{0} ^{1}$ (on the left terms with v and on the right terms with $u)$. On the left we have $(v, \mathcal{A} u)$ and on the right $(\mathcal{A} v, u)$ where both consist of a part on the domain and a part on the boundary.
c. Show (and give argumentations)
$\left(v, \int_{0}^{x} u(t) d t\right)=\ldots=\int_{0}^{1} \int_{0}^{x} u(t) v(x) d t d x=\int_{0}^{1} \int_{t}^{1} u(t) v(x) d x d t=\int_{0}^{1} \int_{x}^{1} u(x) v(t) d t d x=$ $\left(\int_{x}^{1} v(t) d t, u\right)$.
(the third $=$ comes from change of integration order (argue how this change works), the fourth $=$ from interchanging names of the dummy variable). Conclude from this how the adjoint of the integral operator is defined.
d. 1. adjoint of $\frac{d}{d x}$ is $-\frac{d}{d x}$ if boundary conditions are such that $v(1) u(1)-v(0) u(0)=0$, i.e. if boundary conditions are periodic (if $u(1)=u(0)$ and hence also $v(1)=v(0)$). Hence, in that case, skew-adjoint.
2. adjoint of $\frac{d^{2}}{d x^{2}}$ is $\frac{d^{2}}{d x^{2}}$ if boundary conditions are such that $\left.\left(v \frac{d u}{d x}-\frac{d v}{d x} u\right)\right|_{0} ^{1}=0$. This is the case is $u(0)=0$ or $\frac{d u}{d x}(0)=0$, and $u(1)=0$ or $\frac{d u}{d x}(1)=0$. Hence, in that case, self-adjoint.
3. Write $\int_{0}^{1} u(t) d t=\int_{0}^{x} u(t) d t+\int_{x}^{1} u(t) d t$. Use this to conclude that the integral operator is skew-adjoint if $\int_{0}^{1} u(t) d t=0$.

