Book: Bifurcation Analysis of Fluid Flows
 Authors: Fred W. Wubs and Henk A. Dijkstra
 Chapter: 3, Exercise: 3.7
 Exercise author: G. Tiesinga
 Version: 1

Consider $-u_{x x}=\left(\sin \left(2 \pi\left(x-\frac{1}{4}\right)\right)\right)^{2}$ on $[0,1]$ with periodic boundary conditions $u(0)=u(1)$. Compute approximate solution by using Galerkin projection on $\mathcal{V}=\operatorname{span}\left\{v_{1}(x), v_{2}(x)\right\}$ with $v_{1}(x)=\sin (2 \pi x)$, and $v_{2}(x)=\cos (2 \pi x)$.

1. Define residual $r(u)=\left(\sin \left(2 \pi\left(x-\frac{1}{4}\right)\right)\right)^{2}-\left(-u_{x x}\right)$

Galerkin projection: find $u_{\mathcal{V}} \in \mathcal{V}$ s.t. $\left(v, r\left(u_{\mathcal{V}}\right)\right)=0 \quad \forall v \in \mathcal{V}$
Write $\left(v, r\left(u_{\mathcal{V}}\right)\right)=0$ as $\left(v, u_{\mathcal{V}}^{\prime \prime}\right)=\left(v,\left(\sin \left(2 \pi\left(x-\frac{1}{4}\right)\right)\right)^{2}\right)$
2. Take $u_{\mathcal{V}}=a_{1} v_{1}(x)+a_{2} v_{2}(x)$, then a_{1}, a_{2} can be computed from

$$
\left(\begin{array}{ll}
\left(v_{1}, v_{1}^{\prime \prime}\right) & \left(v_{1}, v_{2}^{\prime \prime}\right) \\
\left(v_{2}, v_{1}^{\prime \prime}\right) & \left(v_{2}, v_{2}^{\prime \prime}\right)
\end{array}\right)\binom{a_{1}}{a_{2}}=\binom{\left.\left(v_{1}, \sin \left(2 \pi\left(x-\frac{1}{4}\right)\right)\right)^{2}\right)}{\left.\left(v_{2}, \sin \left(2 \pi\left(x-\frac{1}{4}\right)\right)\right)^{2}\right)}
$$

Take $v_{1}(x)=\sin (2 \pi x), v_{2}(x)=\cos (2 \pi x)$ and compute the matrix and right-hand side of this system by computing the inner products (i.e. by computing the integrals).
3. Solve the system, and then compute $u_{\mathcal{V}}(x)=a_{1} v_{1}(x)+a_{2} v_{2}(x)$

