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i. Consider —-2£ (e*%) = f.

What boundary values are allowed? At one boundary, lets say = 1 we set a Dirichlet
condition (needed to prove coercivity using Pointcaré), on the other boundary we
consider Robin boundary condition au(0) + b%(()) = c and check what values of a
and b we can take.

In weak form a(v,u) = F(v) given by (v, f —(— 4?94 ))+9(0)(c— (au(0)+b%(0))) =
0 (we did not introduce an « to assure coercivity of a(u, v) because we will choose the
values a and b boundary conditions (since they are not given) such that coercivity
can be assured).
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To get only non-negative terms we should at x = 1 prescribe v(1) = 0. In the
next step we will look at the boundary condition at z = 0.

2. Consider a general boundary condition at z = 0, i.e. au(0) + b%(O) = c and
check what values a and b can take.
This boundary condition introduces an additional residual ro(u) = ¢ — (au(0) +
bj—g(O)), and consequently a term v(0)(au(0) —b%(O)) in a(u,v) and a term cv(0)
in F(v) (we did not introduce an « to assure coercivity of a(u,v) because we will
choose the values a and b boundary conditions (since they are not given) such
that coercivity can be assured).
We get a(v,u) = (v, —% - %) + v(0)(au(0) + b%(O)). Hence, using partial
integration,
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where we used v(1) = 0.
For coercivity a(v,v) > 0, and hence all terms need to be non-negative. Hence

we need to take b = —1 (to cancel the term v(0) g”( ) of which we do not know
the sign), and a + 3 > 0, i.e. a > —3. Indeed a(v,v) = 0 only if v = 0, since
a(v,v) = 0 only if gg = 0, which is the case if v = ¢ but since v(1) = 0 it only
holds if v = 0.

Concluding: as boundary condition we can take au(0) — 2%(1) = ¢ with a > —3.

i. «<» ii. Equation (ii) is obtained from equation (i) by multiplying with a positive function
(in this case e™*). As a consequence of this multiplication a larger class of boundary
conditions at « = 0 is allowed, i.e Robin condition au(0) — %(1) = ¢ with a > 0 for
(i) and a > —3 for (ii).

Instead of applymg a Galerkin approach to (i) this comes down to applying a Petrov-
Galerkin approach to (i), instead of having the search and test space both equal to

V (Galerkin), it has different spaces (Petrov-Galerkin), the test space is now e *V.

b. 1. Convection-diffusion equation —tiu, + pu,; + f = 0 can be written as —ug, + %uw =
if which is of the form (ii)

Consider —%(eax(‘%) = ¢g(z) and show that this can be written as —a% - 32712‘ =
e g
When setting e g = if and —a = % one can show e # ( T @u:r,) = e_%xif
Hence, one can show —dci (e_%x%) = i " f which is of the form (i)
2. Show (v,—%(e_%x%j)) —e uxfl—gv —i—fo xgzggdx
Argue that this will result in a(v, u) fo ng gg dx and hence
a(v,v) > mingep1y(e” i fo U)2dx.

Argue that a(v,v) > minxe[o,l](efgx) min(3, 51z)||v|lv (use Poincaré)

Hence, the coercivity constant isc=e¢ » min(%, ﬁ) which — 0 for % — 00.

3. Coercivity constant ¢ close to 0, means that a(.,.) is coercive, but ’barely’. The
problem will have a unique solution, but will be poorly conditioned, i.e. small per-
turbations in the problem might lead to large perturbations in the solution.
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