Book: Bifurcation Analysis of Fluid Flows
 Authors: Fred W. Wubs and Henk A. Dijkstra
 Chapter: 3, Exercise: 3.17a
 Exercise author: G. Tiesinga

 Version: 1

 Version: 1}
a. i. Consider $-\frac{d}{d x}\left(e^{x} \frac{d u}{d x}\right)=f$.

What boundary values are allowed? At one boundary, lets say $x=1$ we set a Dirichlet condition (needed to prove coercivity using Pointcaré), on the other boundary we consider Robin boundary condition $a u(0)+b \frac{d u}{d x}(0)=c$ and check what values of a and b we can take.
In weak form $a(v, u)=F(v)$ given by $\left(v, f-\left(-\frac{d}{d x} e^{x} \frac{d u}{d x}\right)\right)+v(0)\left(c-\left(a u(0)+b \frac{d u}{d x}(0)\right)\right)=$ 0 (we did not introduce an α to assure coercivity of $a(u, v)$ because we will choose the values a and b boundary conditions (since they are not given) such that coercivity can be assured).

$$
\begin{aligned}
a(v, u) & =\int_{0}^{1}-\frac{d}{d x}\left(e^{x} \frac{d u}{d x}\right) v d x+v(0)\left(a u(0)+b \frac{d u}{d x}(0)\right) \\
& =-\left.e^{x} \frac{d u}{d x} v\right|_{0} ^{1}+\int_{0}^{1} e^{x} \frac{d u}{d x} \frac{d v}{d x} d x+v(0)\left(a u(0)+b \frac{d u}{d x}(0)\right) \\
F(v) & =(v, f)+v(0) c \\
\Rightarrow a(v, v) & =-\left.e^{x} \frac{d v}{d x} v\right|_{0} ^{1}+\int_{0}^{1} e^{x}\left(\frac{d v}{d x}\right)^{2} d x+a v(0) v(0)+b \frac{d v}{d x}(0) v(0) \\
& =(b+1) \frac{d v}{d x}(0) v(0)+\int_{0}^{1} e^{x}\left(\frac{d v}{d x}\right)^{2} d x+a v(0)^{2}
\end{aligned}
$$

where we used $v(1)=0$
For coercivity $a(v, v) \geq 0$, and hence all terms need to be non-negative. Hence we need to take $b=-1$ (to cancel the term $v(0) \frac{d v}{d x}(0)$ of which we do not know the sign), and $a>0$. Indeed $a(v, v)=0$ only if $v=0$, since $a(v, v)=0$ only if $\frac{d v}{d x}=0$, which is the case if $v=c$ but since $v(1)=0$ it only holds if $v=0$.
Concluding: as boundary condition we can take $a u(0)-\frac{d u}{d x}(1)=c$ with $a>0$.
ii. 1. Consider $-\frac{d^{2} u}{d x^{2}}-\frac{d u}{d x}=e^{-x} f$. Weak form $a(v, u)=F(v)$ given by $\left(v,-\frac{d^{2} u}{d x^{2}}-\frac{d u}{d x}\right)=$ $\left(v, e^{-x} f\right)$.

$$
\begin{aligned}
a(v, u) & =\int_{0}^{1}-\frac{d^{2} u}{d x^{2}} v-\frac{d u}{d x} v d x=-\left.\frac{d u}{d x} v\right|_{0} ^{1}+\int_{0}^{1} \frac{d u}{d x} \frac{d v}{d x} d x-\int_{0}^{1} \frac{d u}{d x} v d x \\
\Rightarrow a(v, v) & =-\left.\frac{d v}{d x} v\right|_{0} ^{1}+\int_{0}^{1}\left(\frac{d v}{d x}\right)^{2} d x-\int_{0}^{1} \frac{d v}{d x} v d x=-\left.\frac{d v}{d x} v\right|_{0} ^{1}+\int_{0}^{1}\left(\frac{d v}{d x}\right)^{2} d x-\left.\frac{1}{2} v^{2}\right|_{0} ^{1} \\
& =-\left.\frac{d v}{d x} v\right|_{0} ^{1}+\int_{0}^{1}\left(\frac{d v}{d x}\right)^{2} d x-\frac{1}{2} v(1)^{2}+\frac{1}{2} v(0)^{2}
\end{aligned}
$$

To get only non-negative terms we should at $x=1 \operatorname{prescribe} v(1)=0$. In the next step we will look at the boundary condition at $x=0$.
2. Consider a general boundary condition at $x=0$, i.e. $a u(0)+b \frac{d u}{d x}(0)=c$ and check what values a and b can take.
This boundary condition introduces an additional residual $r_{2}(u)=c-(a u(0)+$ $\left.b \frac{d u}{d x}(0)\right)$, and consequently a term $v(0)\left(a u(0)-b \frac{d u}{d x}(0)\right)$ in $a(u, v)$ and a term $c v(0)$ in $F(v)$ (we did not introduce an α to assure coercivity of $a(u, v)$ because we will choose the values a and b boundary conditions (since they are not given) such that coercivity can be assured).
We get $a(v, u)=\left(v,-\frac{d^{2} u}{d x^{2}}-\frac{d u}{d x}\right)+v(0)\left(a u(0)+b \frac{d u}{d x}(0)\right)$. Hence, using partial integration,

$$
a(v, v)=\frac{d v}{d x}(0) v(0)+\int_{0}^{1}\left(\frac{d v}{d x}\right)^{2} d x+\left(a+\frac{1}{2} v(0)^{2}\right)+b v(0) \frac{d v}{d x}(0)
$$

where we used $v(1)=0$.
For coercivity $a(v, v) \geq 0$, and hence all terms need to be non-negative. Hence we need to take $b=-1$ (to cancel the term $v(0) \frac{d v}{d x}(0)$ of which we do not know the sign), and $a+\frac{1}{2}>0$, i.e. $a>-\frac{1}{2}$. Indeed $a(v, v)=0$ only if $v=0$, since $a(v, v)=0$ only if $\frac{d v}{d x}=0$, which is the case if $v=c$ but since $v(1)=0$ it only holds if $v=0$.
Concluding: as boundary condition we can take $a u(0)-\frac{d u}{d x}(1)=c$ with $a>-\frac{1}{2}$.
i. \leftrightarrow ii. Equation (ii) is obtained from equation (i) by multiplying with a positive function (in this case e^{-x}). As a consequence of this multiplication a larger class of boundary conditions at $x=0$ is allowed, i.e Robin condition $a u(0)-\frac{d u}{d x}(1)=c$ with $a>0$ for (i) and $a>-\frac{1}{2}$ for (ii).

Instead of applying a Galerkin approach to (i) this comes down to applying a PetrovGalerkin approach to (i), instead of having the search and test space both equal to \mathcal{V} (Galerkin), it has different spaces (Petrov-Galerkin), the test space is now $e^{-x} \mathcal{V}$.
b. 1. Convection-diffusion equation $-\bar{u} u_{x}+\mu u_{x x}+f=0$ can be written as $-u_{x x}+\frac{\bar{u}}{\mu} u_{x}=$ $\frac{1}{\mu} f$ which is of the form (ii)
Consider $-\frac{d}{d x}\left(e^{\alpha x} \frac{d u}{d x}\right)=g(x)$ and show that this can be written as $-\alpha \frac{d u}{d x}-\frac{d^{2} u}{d x^{2}}=$ $e^{-\alpha x} g$
When setting $e^{-\alpha x} g=\frac{1}{\mu} f$ and $-\alpha=\frac{\bar{u}}{\mu}$ one can show $e^{-\frac{\bar{u}}{\mu} x}\left(-u_{x x}+\frac{\bar{u}}{\mu} u_{x}\right)=e^{-\frac{\bar{u}}{\mu} x} \frac{1}{\mu} f$ Hence, one can show $-\frac{d}{d x}\left(e^{-\frac{\bar{u}}{\mu} x} \frac{d u}{d x}\right)=\frac{1}{\mu} e^{-\frac{\bar{u}}{\mu} x} f$ which is of the form (i)
2. Show $\left(v,-\frac{d}{d x}\left(e^{-\frac{\bar{u}}{\mu} x} \frac{d u}{d x}\right)\right)=-\left.e^{-\frac{\bar{u}}{\mu} x} \frac{d u}{d x} v\right|_{0} ^{1}+\int_{0}^{1} e^{-\frac{\bar{u}}{\mu} x} \frac{d u}{d x} \frac{d v}{d x} d x$.

Argue that this will result in $a(v, u)=\int_{0}^{1} e^{-\frac{\bar{u}}{\mu} x} \frac{d u}{d x} \frac{d v}{d x} d x$ and hence

$$
a(v, v) \geq \min _{x \in[0,1]}\left(e^{-\frac{\bar{u}}{\mu} x}\right) \int_{0}^{1}\left(\frac{d v}{d x}\right)^{2} d x .
$$

Argue that $a(v, v) \geq \min _{x \in[0,1]}\left(e^{-\frac{\bar{u}}{\mu} x}\right) \min \left(\frac{1}{2}, \frac{1}{2 L^{2}}\right)\|v\|_{\mathcal{V}}$ (use Poincaré)
Hence, the coercivity constant is $c=e^{-\frac{\bar{u}}{\mu}} \min \left(\frac{1}{2}, \frac{1}{2 L^{2}}\right)$ which $\rightarrow 0$ for $\frac{\bar{u}}{\mu} \rightarrow \infty$.
3. Coercivity constant c close to 0 , means that $a(.,$.$) is coercive, but 'barely'. The$ problem will have a unique solution, but will be poorly conditioned, i.e. small perturbations in the problem might lead to large perturbations in the solution.

