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a. i. Consider − d
dx(ex dudx) = f .

What boundary values are allowed? At one boundary, lets say x = 1 we set a Dirichlet
condition (needed to prove coercivity using Pointcaré), on the other boundary we
consider Robin boundary condition au(0) + bdudx(0) = c and check what values of a
and b we can take.
In weak form a(v, u) = F (v) given by (v, f−(− d

dxe
x du
dx))+v(0)(c−(au(0)+bdudx(0))) =

0 (we did not introduce an α to assure coercivity of a(u, v) because we will choose the
values a and b boundary conditions (since they are not given) such that coercivity
can be assured).
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F (v) = (v, f) + v(0)c

⇒ a(v, v) = −ex dv
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where we used v(1) = 0
For coercivity a(v, v) ≥ 0, and hence all terms need to be non-negative. Hence we
need to take b = −1 (to cancel the term v(0) dvdx(0) of which we do not know the sign),

and a > 0. Indeed a(v, v) = 0 only if v = 0, since a(v, v) = 0 only if dv
dx = 0, which is

the case if v = c but since v(1) = 0 it only holds if v = 0.
Concluding: as boundary condition we can take au(0)− du

dx(1) = c with a > 0.

ii. 1. Consider −d2u
dx2− du

dx = e−xf . Weak form a(v, u) = F (v) given by (v,−d2u
dx2− du

dx) =
(v, e−xf).
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To get only non-negative terms we should at x = 1 prescribe v(1) = 0. In the
next step we will look at the boundary condition at x = 0.

2. Consider a general boundary condition at x = 0, i.e. au(0) + bdudx(0) = c and
check what values a and b can take.
This boundary condition introduces an additional residual r2(u) = c− (au(0) +
bdudx(0)), and consequently a term v(0)(au(0)−bdudx(0)) in a(u, v) and a term cv(0)
in F (v) (we did not introduce an α to assure coercivity of a(u, v) because we will
choose the values a and b boundary conditions (since they are not given) such
that coercivity can be assured).

We get a(v, u) = (v,−d2u
dx2 − du

dx) + v(0)(au(0) + bdudx(0)). Hence, using partial
integration,
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dv
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where we used v(1) = 0.
For coercivity a(v, v) ≥ 0, and hence all terms need to be non-negative. Hence
we need to take b = −1 (to cancel the term v(0) dvdx(0) of which we do not know
the sign), and a + 1

2 > 0, i.e. a > −1
2 . Indeed a(v, v) = 0 only if v = 0, since

a(v, v) = 0 only if dv
dx = 0, which is the case if v = c but since v(1) = 0 it only

holds if v = 0.
Concluding: as boundary condition we can take au(0)− du

dx(1) = c with a > −1
2 .

i. ↔ ii. Equation (ii) is obtained from equation (i) by multiplying with a positive function
(in this case e−x). As a consequence of this multiplication a larger class of boundary
conditions at x = 0 is allowed, i.e Robin condition au(0)− du

dx(1) = c with a > 0 for
(i) and a > −1

2 for (ii).

Instead of applying a Galerkin approach to (i) this comes down to applying a Petrov-
Galerkin approach to (i), instead of having the search and test space both equal to
V (Galerkin), it has different spaces (Petrov-Galerkin), the test space is now e−xV.

b. 1. Convection-diffusion equation −ūux +µuxx + f = 0 can be written as −uxx + ū
µux =

1
µf which is of the form (ii)

Consider − d
dx(eαx dudx) = g(x) and show that this can be written as −αdudx −

d2u
dx2 =

e−αxg

When setting e−αxg = 1
µf and −α = ū
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− ū
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− ū
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x 1
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Hence, one can show − d
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− ū
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f which is of the form (i)
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µ
x du
dx)) = −e−

ū
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Argue that this will result in a(v, u) =
∫ 1

0 e
− ū
µ
x du
dx

dv
dxdx and hence

a(v, v) ≥ minx∈[0,1](e
− ū
µ
x
)
∫ 1

0 ( dvdx)2dx.

Argue that a(v, v) ≥ minx∈[0,1](e
− ū
µ
x
) min(1

2 ,
1

2L2 )‖v‖V (use Poincaré)

Hence, the coercivity constant is c = e
− ū
µ min(1

2 ,
1

2L2 ) which → 0 for ū
µ →∞.

3. Coercivity constant c close to 0, means that a(., .) is coercive, but ’barely’. The
problem will have a unique solution, but will be poorly conditioned, i.e. small per-
turbations in the problem might lead to large perturbations in the solution.
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