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a.(1). From differential equation to weak form

Consider −d2u
dx2 + (1 + x)u = x2 on Ω = [0, 1]

1. Boundary conditions u(0) = u(1) = 0
Hence, we search solutions in W = {u ∈ C2[0, 1]|u(0) = u(1) = 0}

2. Galerkin approach:
Define residual r(u) = x2 − (−d2u

dx2 + (1 + x)u).
find uV ∈ V s.t. (v, r(uV)) = 0 ∀v ∈ V, Define V later on.
Write as a(v, u) = F (v). Therefor, use partial integration and use v(0) = v(1) = 0
(because u(0) = u(1) = 0 and v is in the same space as u) to show that we can write

(v,−d
2u

dx2
+ (1 + x)u) = (

dv

dx

du

dx
) + (v, (1 + x)u)

Conclude that we can write the problem as find u ∈ V s.t. for all v ∈ V

a(v, u) = F (v) with a(v, u) = (
dv

dx
,
du

dx
) + (v, (1 + x)u), F (v) = (v, x2)

3. Since the weak form consists of first order derivative (and no longer second order)
we can expand W to Ŵ = {u ∈ H1[0, 1]|u(0) = u(1) = 0} Taking V = Ŵ gives

V = {v ∈ H1[0, 1]|v(0) = v(1) = 0}

c.(3) From weak form to differential equation

a(v, u) = ((1 + cos(x)) dvdx ,
du
dx), F (v) = (v, exp(x))

V = {v ∈ H1[0, 1] | v(0) = v(1) = 0}

1. Determine differential equation: rewrite a(v, u) = ((1 + cos(x)) dvdx ,
du
dx) in the form

a(v, u) = (v, .) where the second argument of the inner product does not depend on
v.

Show using partial integration and v(0) = v(1) = 0 that we can write

a(v, u) = (v,− sin(x)dudx + (1 + cos(x))d
2u

dx2 ).

Hence, the differential equation is − sin(x)dudx + (1 + cos(x))d
2u

dx2 = exp(x)
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2. Determine boundary conditions for u: since u ∈ V, we have u(0) = u(1) = 0.

c.(4) 1. Determine differential equation: show using partial integration and v(0) = v(1) = 0

that we can write a(u, v) = (v, (−du
dx −

d2u
dx2 )). Hence, −du

dx −
d2u
dx2 = exp(x)

2. Determine boundary conditions

d.a.(1) We have

a(v, u) = (
dv

dx
,
du

dx
) + (v, (1 + x)u)

⇒ a(u, u) = (
du

dx
,
du

dx
) + (u, (1 + x)u) =

∫ 1

0
(
du

dx
)2dx+

∫ 1

0
(1 + x)u2dx ≥ 0

because (dudx)2 ≥ 0, u2 ≥ 0 and 1 + x > 0 for x ∈ [0, 1]. Since a(u, u) = 0 if du
dx = 0 and

u = 0, we see a(u, u) = 0 only if u = 0.
Concluding: a(., .) is positive definite.

d.c.(3) Argue that a(u, u) =
∫ 1
0 (1 + cos(x))(dudx)2 is ≥ 0, and that a(u, u) = 0 if du

dx = 0, hence if
u(x) = c, but since the boundary conditions are such that u(0) = 0, u(1) = 0 it must hold
that u(x) = 0 (hence c = 0). Hence, a(u, u) = 0 only if u = 0. Conclude that a(., .) is
positive definite.

d.c.(4) Show that a(u, u) =
∫ 1
0 u

du
dxdx+ (dudx)2dx. The second integral is ≥ 0, but the first integral

(and hence a(u, u)) is not necessarily larger than 0. Hene a(., .) not positive definite.

e.a.(1) From d.a.(1) we know a(., .) is positive definite. Now show a(v, u) = a(u, v). Then, con-
clude a(., .) is symmetric positive definite and hence we can write problem as minimization:
find uV ∈ V s.t. uV = argminv∈V(a(v, v)− 2F (v))

e.c.(3) Reasoning similar as e.a.(1)

e.c.(4) From d.c.(4) we know a(., .) is not positive definite. Hence, we can not write problem as
minimization problem.

a+d. Consider −d2u
dx2 + (1 + x)u = x2 on Ω = [0, 1]

a+d.(2) Boundary conditions u(0) = 1, u(1) = 5.

1. write u(x) = ū(x) + ũ(x) s.t. ū(x) is fixed and ũ(0) = 0, ũ(1) = 0.
Hence, take ū(x) s.t. ū(0) = 1, ū(1) = 5 ⇒ ū = 1 + 4x.

2. Give problem for ũ:
−d2ũ

dx2 + (1 + x)ũ = x2 − (1 + x)(1 + 4x) with ũ(0) = 0, ũ(1) = 0.

3. solve using approach analogously to the one in part a.(1)

a+d.(3) Boundary conditions du
dx(0) = 3, u(1) = 0

1. Argue that V = {v ∈ H1[0, 1]
∣∣∣ v(1) = 0}.

Note: V only has boundary conditions where u has Dirichlet boundary conditions, if
u has Neumann or Robin boundary conditions at a boundary, V does not impose a
boundary condition at that boundary on its elements.

2. Consider residual r1(u) = x2 − (−d2u
dx2 + (1 + x)u) and r2(u) = 3− du

dx(0).
Galerkin approach: find u ∈ V s.t. (v, r1(u)) + αv(0)r2(u) = 0 ∀v ∈ V
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3. show this can be written as a(v, u) = F (v) with
a(v, u) = v(0)dudx(0) +

∫ 1
0

dv
dx

du
dxdx+

∫ 1
0 (1 + x)vudx+αv(0)dudx(0) and F (v) = (v, x2) +

α3v(0)

4. Now choose α such that a(., .) will be positive definite, and can possibly be coercive.
Consider a(v, v) = v(0) dvdx(0) +

∫ 1
0 ( dvdx)2dx+

∫ 1
0 (1 + x)v2dx+ αv(0) dvdx(0)

The term v(0) dvdx(0) of which the sign is not known should cancel, i.e. choose α = −1.

Then a(v, v) =
∫ 1
0 ( dvdx)2dx +

∫ 1
0 (1 + x)v2dx. Which is ≥ 0 since ( dvdx)2 ≥ 0 and

(1 + x)v2 ≥ 0 (the latter because 1 + x > 0 for x ∈ [0, 1]). Where = 0 only if dv
dx = 0

and v = 0. Hence a(v, v) ≥ 0 and a(v, v) = 0 only if v = 0.

5. Hence Galerkin approach: find u ∈ V s.t. a(v, u) = F (v) with
a(v, u) =

∫ 1
0

dv
dx

du
dxdx+

∫ 1
0 (1 + x)vudx and F (v) = (v, x2)− 3v(0) ∀v ∈ V

a+d.(4) Boundary conditions du
dx(0) = 3, u(1) = 5

1. we need a zero boundary condition, define u(x) = 5 + ũ(x) and solve problem in
terms of ũ.

2. Show du
dx(0) = 3, u(1) = 5 ⇒ dũ

dx(0) = 3, ũ(1) = 0 and

−d2u
dx2 + (1 + x)u = x2 ⇒ − d2ũ

dx2 + (1 + x)u = x2 − 5(1 + x).

3. Argue that V = {v ∈ H1[0, 1]
∣∣∣ v(1) = 0}.

4. Now apply Galerkin to equations for ũ, using residuals r1(u) = x2 − 5(1 + x) −
(−d2u

dx2 + (1 + x)u) and r2(u) = 3− du
dx(0) (note that we use still u here for simplicity

of notation instead of ũ).

5. show α = −1 and show that the problem can be written as a(v, u) = F (v) with
a(v, u) =

∫ 1
0

dv
dx

du
dxdx+

∫ 1
0 (1 + x)vudx and F (v) = (v, x2 − 5(1 + x))− 3v(0).

6. show a(v, u) positive definite

a+d.(5) Boundary conditions du
dx(0) + 9u(0) = 3, u(1) = 0

1. Argue that V = {v ∈ H1[0, 1]
∣∣∣ v(1) = 0}.

2. Apply Galerking approach using residuals r1(u) = x2−(−d2u
dx2 +(1+x)u) and r2(u) =

3− (dudx(0) + 9u(0))

3. Show it can be written as a(v, u) = F (v) with a(v, u) = v(0)dudx(0) +
∫ 1
0

dv
dx

du
dxdx +∫ 1

0 (1 + x)vudx+ αv(0)(dudx(0) + 9u(0)) and F (v) = (v, x2) + α3v(0).

4. consider a(v, v) and show that we should take α = −1 and that
a(u, v) =

∫ 1
0

dv
dx

du
dxdx+

∫ 1
0 (1 + x)vudx− 9v(0)u(0) and F (v) = (v, x2)− 3v(0).

But conclude that a(., .) is not positive definite and hence not coercive, because of
the term −9v(0)u(0).
Hence the problem does not satisfy the Lax-Milgram Theorem, this means that we
are not able to conclude whether the problem is well-posed or not (i.e. whether it
has a unique solution or not)

a+d.(6) Boundary conditions du
dx(0)− 9u(0) = 3, u(1) = 0

1. almost similar to part a.(4) except that it will result in a(u, v) =
∫ 1
0

dv
dx

du
dxdx+

∫ 1
0 (1 +

x)vudx+ 9v(0)u(0).

2. argue that now a(v, u) is positive definite
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b. Consider − d
dx(exp(x)dudx) = sin(x) on Ω = [−1, 0]

Boundary conditions u(−1) = 0, du
dx(0) = 5.

1. Argue that V = {v ∈ H1[0, 1]
∣∣∣ v(−1) = 0}.

2. Apply Galerking approach using residuals
r1(u) = sin(x)− (− d

dx(exp(x)dudx) and r2(u) = 5− du
dx(0)

3. show that we should choose α = 1 and that
a(v, u) =

∫ 0
−1

dv
dx exp(x)dudxdx and F (v) = (v, sin(x)) + 5v(0)

4. show that a(v, v) ≥ 0 and a(v, v) = 0 only if v = 0. For the latter: a(v, v) = 0 only
if dv

dx = 0 and hence if v = c, but since in V we have v(−1) = 0 this results in c = 0
and hence a(v, v) = 0 only if v = 0.
Hence a(., .) positive definite

c+d. Compare to Exercise 1.15 c+d.3 and c+d.4 in Hints Tutorial 1.

c+d.(1) Given a(v, u) = 5( dvdx ,
du
dx)+3v(0)u(0), F (v) = (v, cos(x))−5v(0) and V = {v ∈ H1[0, 1]

∣∣∣ v(1) =

0}

1. Write in the form (v, . . .) + v(0) . . . where the . . . depend on u and not on v. Then
the second argument of the inner product (v, . . .) holds the differential equation and
the second term in v(0) . . . the boundary condition at x = 0

Show that we can rewrite a(v, u) = F (v) as
∫ 1
0 v(−5d2u

dx2 − cosx)dx + v(0)(3u(0) −
5du
dx(0) + 5) = 0 for arbitrary v ∈ V

2. argue that we get the differential equation −5d2u
dx2 − cosx = 0 with boundary condi-

tions u(1) = 0 and 3u(0)−5du
dx(0) + 5 = 0. Or similar: −5d2u

dx2 = cosx with boundary

conditions u(1) = 0 and 3u(0)− 5du
dx(0) = −5.

3. show a(v, v) = 5
∫ 1
0 ( dvdx)2dx+ 3v(0)2 and argue that a(v, v) ≥ 0 and a(v, v) = 0 only

if dv
dx = 0, i.e. v = c, and v(0) = 0, and hence only if v = 0. Conclude: a(u, v)

positive definite.

c+d.(2) Given a(v, u) = 5( dvdx ,
du
dx)−3v(0)u(0), F (v) = (v, cos(x))−5v(0) and V = {v ∈ H1[0, 1]

∣∣∣ v(1) =

0}

1. similar to part c+d.(2)

2. argue that we get the differential equation −5d2u
dx2 − cosx = 0 with boundary con-

ditions u(1) = 0 and −3u(0) − 5du
dx(0) + 5 = 0. Or similar: −5d2u

dx2 = cosx with

boundary conditions u(1) = 0 and −3u(0)− 5du
dx(0) = −5.

3. show that a(u, v) is not positive definite. Hence, the conditions of Lax-Milgram are
not satisfied and hence the problem might not be well-posed, i.e. the solution might
not exist or might not be unique.

e. For all problems for which a(v, u) is symmetric and positive definite we can write the
problem as a minimization problem: find uV = argminv∈V(a(v, v)− 2F (v)).
In all of our cases a(v, u) is symmetric (show!), but as we have seen not in all cases it is
positive definite.
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