Book: Bifurcation Analysis of Fluid Flows
 Authors: Fred W. Wubs and Henk A. Dijkstra
 Chapter: 3, Exercise: 3.12
 Exercise author: G. Tiesinga
 Version: 1

a. 1. Since A is symmetric, its eigenvalues are real and the matrix is diagonalizable, i.e. its eigenvectors form an orthonormal basis for \mathbb{R}^{n}. Since A is positive definite its eigenvalues are larger than 0 .
2. Say A has eigenvalues $0<\lambda_{1} \leq \ldots \leq \lambda_{n}$ and corresponding orthonormal eigenvectors v_{i} then we can write $x=\alpha_{1} v_{1}+\ldots+\alpha_{n} v_{n}$ with some constants α_{i} which gives

$$
\begin{aligned}
x^{T} A x & =\left(\sum \alpha_{j} v_{j}\right)^{T} A\left(\sum \alpha_{i} v_{i}\right) \\
& =\ldots=\sum \sum \alpha_{j} \alpha_{i} \lambda_{i} v_{j}^{T} v_{i} \\
& =\lambda_{1} \alpha_{1}^{2}+\ldots+\lambda_{n} \alpha_{n}^{2} \\
& \geq \lambda_{1} \alpha_{1}^{2}+\ldots+\lambda_{1} \alpha_{n}^{2} \\
& =\lambda_{1}\|x\|^{2}
\end{aligned}
$$

where we used $v_{j}^{T} v_{i}=0$ if $i \neq j, v_{i}^{T} v_{i}=1$ (because v_{i} orthonormal), and consequently $\|x\|^{2}=x^{T} x=\sum \alpha_{i}^{2}$.
b. 1. Assume A is singular, $\exists x \neq 0$ s.t. $A x=0$, and hence $x^{T} A x=0$. This contradicts with the given that $x^{T} A x \geq x^{T} x$ for some c. Hence A non-singular.
2. If A is non-singular, the problem $A x=b$ has a unique solution.

Remark 1:

The above agrees with Lax-Milgram. If the matrix A satisfies coercivity, it is non-singular and $A x=b$ has a unique solution (problem is well-posed).
Remark 2:
Part c. and d. do not look at the whole space \mathbb{R}^{n} but at a subspace $\mathcal{V} \subset \mathbb{R}^{n}$ (note that the solution of $A x=b$ is not necessarily in \mathcal{V}). Galerkin approach: find $x_{\mathcal{V}} \in \mathcal{V}$ such that $\left(v, A x_{\mathcal{V}}-b\right)=0 \forall v \in \mathcal{V} \Rightarrow v^{T} A x_{\mathcal{V}}=v^{T} b \forall v \in \mathcal{V}$. Let V be the matrix which columns are the basis vectors of $\mathcal{V}($ if $\operatorname{dim}(\mathcal{V})=m$ then V is an $n \times m$ matrix), then the Galerkin approach can be written as: find $x_{\mathcal{V}} \in \mathcal{V}$ such that $V^{T} A x_{\mathcal{V}}=V^{T} b$. Since $x_{\mathcal{V}} \in \mathcal{V}$ we know $\exists \hat{x} \in \mathbb{R}^{m}$ s.t. $x_{\mathcal{V}}=V \hat{x}$. This results in: find $\hat{x} \in \mathbb{R}^{m}$ s.t. $V^{T} A V \hat{x}=V^{T} b$ where $V^{T} A V$ (an $m \times m$ matrix). Part c. shows that when the matrix $V^{T} A V$ is positive definite (and hence coercive, finite dimensional case), the problem $V^{T} A V \hat{x}=V^{T} b$ is well-posed, has a unique solution. Part d. shows that when the matrix $V^{T} A V$ is not positive definite (and hence not coercive), the problem $V^{T} A V \hat{x}=V^{T} b$ need not be well-posed ($V^{T} A V$ singular and hence not a unique solution).
c. Note: A does not have to be symmetric here!

Assume A an $n \times n$ matrix, positive definite. Hence $(x, A x)>0 \quad \forall x \neq 0$ where $x \in \mathbb{R}^{n}$, and consequently $(v, A v)>0 \forall v \neq 0$ where $v \in \mathcal{V} \subset \mathbb{R}^{n}$.
If A would be singular on \mathcal{V} then $\exists v \neq 0$ s.t. $A v=0$, and hence $v^{T} A v=0$. This contradicts with the given that $v^{T} A v>0$. Hence, the Galerkin approximation of A is non-singular.
d. $\quad 1 . v^{T} A v=0 \Rightarrow v=\alpha\left(\begin{array}{ll}1 & 1\end{array}\right)^{T}$, i.e. $\mathcal{V}=\operatorname{span}\left\{\left(\begin{array}{ll}1 & 1\end{array}\right)^{T}\right\}$. Then $V^{T} A V=0$, and hence is a singular matrix.
2. For Petrov-Galerkin: the search space \mathcal{V} is not the same as the test space \mathcal{W}, i.e. find $x_{\mathcal{V}} \in \mathcal{V}$ such that $\left(w, A x_{\mathcal{V}}-b\right)=0 \quad \forall w \in \mathcal{W}$. Taking $\mathcal{W}=A \mathcal{V}$ results in $(A V)^{T} A V \hat{x}=(A V)^{T} b$. The Petrov-Galerkin approximation of A is $V^{T} A^{T} A V$, which can be considered as Galerkin approximation of $A^{T} A$, which is a positive definite matrix and hence by part c . is non singular.

