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a. 1. Since A is symmetric, its eigenvalues are real and the matrix is diagonalizable, i.e.
its eigenvectors form an orthonormal basis for Rn. Since A is positive definite its
eigenvalues are larger than 0.

2. Say A has eigenvalues 0 < λ1 ≤ ... ≤ λn and corresponding orthonormal eigenvectors
vi then we can write x = α1v1 + . . .+ αnvn with some constants αi which gives
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2
n
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where we used vTj vi = 0 if i 6= j, vTi vi = 1 (because vi orthonormal), and consequently

‖x‖2 = xTx =
∑
α2
i .

b. 1. Assume A is singular, ∃ x 6= 0 s.t. Ax = 0, and hence xTAx = 0. This contradicts
with the given that xTAx ≥ xTx for some c. Hence A non-singular.

2. If A is non-singular, the problem Ax = b has a unique solution.

Remark 1:
The above agrees with Lax-Milgram. If the matrix A satisfies coercivity, it is non-singular and
Ax = b has a unique solution (problem is well-posed).
Remark 2:
Part c. and d. do not look at the whole space Rn but at a subspace V ⊂ Rn (note that
the solution of Ax = b is not necessarily in V). Galerkin approach: find xV ∈ V such that
(v,AxV − b) = 0 ∀ v ∈ V ⇒ vTAxV = vT b ∀ v ∈ V. Let V be the matrix which columns are
the basis vectors of V (if dim(V) = m then V is an n×m matrix), then the Galerkin approach
can be written as: find xV ∈ V such that V TAxV = V T b. Since xV ∈ V we know ∃ x̂ ∈ Rm s.t.
xV = V x̂. This results in: find x̂ ∈ Rm s.t. V TAV x̂ = V T b where V TAV (an m×m matrix).
Part c. shows that when the matrix V TAV is positive definite (and hence coercive, finite
dimensional case), the problem V TAV x̂ = V T b is well-posed, has a unique solution. Part d.
shows that when the matrix V TAV is not positive definite (and hence not coercive), the problem
V TAV x̂ = V T b need not be well-posed (V TAV singular and hence not a unique solution).
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c. Note: A does not have to be symmetric here!
Assume A an n× n matrix, positive definite. Hence (x,Ax) > 0 ∀ x 6= 0 where x ∈ Rn,
and consequently (v,Av) > 0 ∀ v 6= 0 where v ∈ V ⊂ Rn.
If A would be singular on V then ∃ v 6= 0 s.t. Av = 0, and hence vTAv = 0. This
contradicts with the given that vTAv > 0. Hence, the Galerkin approximation of A is
non-singular.

d. 1. vTAv = 0⇒ v = α(1 1)T , i.e. V = span{(1 1)T }. Then V TAV = 0, and hence is a
singular matrix.

2. For Petrov-Galerkin: the search space V is not the same as the test space W, i.e.
find xV ∈ V such that (w,AxV − b) = 0 ∀ w ∈ W. Taking W = AV results
in (AV )TAV x̂ = (AV )T b. The Petrov-Galerkin approximation of A is V TATAV ,
which can be considered as Galerkin approximation of ATA, which is a positive
definite matrix and hence by part c. is non singular.
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