Book: Bifurcation Analysis of Fluid Flows Authors: Fred W. Wubs and Henk A. Dijkstra Chapter: 3, Exercise: 3.12 Exercise author: G. Tiesinga Version: 1

- a. 1. Since A is symmetric, its eigenvalues are real and the matrix is diagonalizable, i.e. its eigenvectors form an orthonormal basis for \mathbb{R}^n . Since A is positive definite its eigenvalues are larger than 0.
 - 2. Say A has eigenvalues $0 < \lambda_1 \leq ... \leq \lambda_n$ and corresponding orthonormal eigenvectors v_i then we can write $x = \alpha_1 v_1 + ... + \alpha_n v_n$ with some constants α_i which gives

$$x^{T}Ax = (\sum \alpha_{j}v_{j})^{T}A(\sum \alpha_{i}v_{i})$$
$$= \dots = \sum \sum \alpha_{j}\alpha_{i}\lambda_{i}v_{j}^{T}v_{i}$$
$$= \lambda_{1}\alpha_{1}^{2} + \dots + \lambda_{n}\alpha_{n}^{2}$$
$$\geq \lambda_{1}\alpha_{1}^{2} + \dots + \lambda_{1}\alpha_{n}^{2}$$
$$= \lambda_{1}||x||^{2}$$

where we used $v_j^T v_i = 0$ if $i \neq j$, $v_i^T v_i = 1$ (because v_i orthonormal), and consequently $||x||^2 = x^T x = \sum \alpha_i^2$.

- b. 1. Assume A is singular, $\exists x \neq 0$ s.t. Ax = 0, and hence $x^T Ax = 0$. This contradicts with the given that $x^T Ax \geq x^T x$ for some c. Hence A non-singular.
 - 2. If A is non-singular, the problem Ax = b has a unique solution.

Remark 1:

The above agrees with Lax-Milgram. If the matrix A satisfies coercivity, it is non-singular and Ax = b has a unique solution (problem is well-posed). Remark 2:

Part c. and d. do not look at the whole space \mathbb{R}^n but at a subspace $\mathcal{V} \subset \mathbb{R}^n$ (note that the solution of Ax = b is not necessarily in \mathcal{V}). Galerkin approach: find $x_{\mathcal{V}} \in \mathcal{V}$ such that $(v, Ax_{\mathcal{V}} - b) = 0 \quad \forall v \in \mathcal{V} \Rightarrow v^T Ax_{\mathcal{V}} = v^T b \quad \forall v \in \mathcal{V}$. Let V be the matrix which columns are the basis vectors of \mathcal{V} (if dim $(\mathcal{V}) = m$ then V is an $n \times m$ matrix), then the Galerkin approach can be written as: find $x_{\mathcal{V}} \in \mathcal{V}$ such that $V^T Ax_{\mathcal{V}} = V^T b$. Since $x_{\mathcal{V}} \in \mathcal{V}$ we know $\exists \hat{x} \in \mathbb{R}^m$ s.t. $x_{\mathcal{V}} = V\hat{x}$. This results in: find $\hat{x} \in \mathbb{R}^m$ s.t. $V^T A V \hat{x} = V^T b$ where $V^T A V$ (an $m \times m$ matrix). Part c. shows that when the matrix $V^T A V$ is positive definite (and hence coercive, finite dimensional case), the problem $V^T A V \hat{x} = V^T b$ is well-posed, has a unique solution. Part d. shows that when the matrix $V^T A V$ is not positive definite (and hence not coercive), the problem

 $V^T A V \hat{x} = V^T b$ need not be well-posed ($V^T A V$ singular and hence not a unique solution).

c. Note: A does not have to be symmetric here!

Assume A an $n \times n$ matrix, positive definite. Hence $(x, Ax) > 0 \quad \forall x \neq 0$ where $x \in \mathbb{R}^n$, and consequently $(v, Av) > 0 \quad \forall v \neq 0$ where $v \in \mathcal{V} \subset \mathbb{R}^n$.

If A would be singular on \mathcal{V} then $\exists v \neq 0$ s.t. Av = 0, and hence $v^T Av = 0$. This contradicts with the given that $v^T Av > 0$. Hence, the Galerkin approximation of A is non-singular.

- d. 1. $v^T A v = 0 \Rightarrow v = \alpha (1 \ 1)^T$, i.e. $\mathcal{V} = \text{span}\{(1 \ 1)^T\}$. Then $V^T A V = 0$, and hence is a singular matrix.
 - 2. For Petrov-Galerkin: the search space \mathcal{V} is not the same as the test space \mathcal{W} , i.e. find $x_{\mathcal{V}} \in \mathcal{V}$ such that $(w, Ax_{\mathcal{V}} - b) = 0 \quad \forall \ w \in \mathcal{W}$. Taking $\mathcal{W} = A\mathcal{V}$ results in $(AV)^T AV\hat{x} = (AV)^T b$. The Petrov-Galerkin approximation of A is $V^T A^T AV$, which can be considered as Galerkin approximation of $A^T A$, which is a positive definite matrix and hence by part c. is non singular.