Book: Bifurcation Analysis of Fluid Flows
 Authors: Fred W. Wubs and Henk A. Dijkstra
 Chapter: 3, Exercise: 3.11
 Exercise author: G. Tiesinga
 Version: 1

$J(v)=\frac{1}{2} a(v, v)-F(v)$ (note: $a(.,$.$) is bi-linear and F($.$) is linear).$
Show that when $a(.,$.$) symmetric J(u+\epsilon w)=J(u)+\epsilon(a(w, u)-F(w))+\frac{1}{2} \epsilon^{2} a(w, w)$:

1. show $a(u+\epsilon w, u+\epsilon w)=a(u, u)+2 \epsilon a(w, u)+\epsilon^{2} a(w, w)$, using bi-linearity and symmetry of $a(.,$.$) (denote in your computation when you are using each of these properties)$
2. $F(u+\epsilon w)=F(u)+\epsilon F(w)$ because of linearity.
3. rewrite $J(u+\epsilon w)$ using the above

What does it mean if u is a stationary point of $J(u)$?

1. u stationary point if $\left.\frac{d}{d \epsilon} J(u+\epsilon w)\right|_{\epsilon=0}=0 \quad \forall w$ (directional derivative)
2. show that this results in: u such that $a(u, w)=F(w) \quad \forall w$

Remark:
the conclusion from Exercise 1.11 is that solving $\operatorname{argmin}_{u} J(u)=\operatorname{argmin}_{u}\left(\frac{1}{2} a(u, u)-F(u)\right)$ is equivalent to solving $a(u, w)=F(w) \quad \forall w$ (where we saw the first one when solving $\mathcal{A} u=f$ using minimization and the second one when using Galerkin approximation).

