Book: Bifurcation Analysis of Fluid Flows Authors: Fred W. Wubs and Henk A. Dijkstra Chapter: 3, Exercise: 3.10 Exercise author: G. Tiesinga Version: 1

a. 1. $J_1(x) = ||x - z||_A = \sqrt{(x - z, A(x - z))}$ so we minimize (x - z, A(x - z)). Using the directional derivative in the direction of arbitrary vector $y \in \mathcal{V}$, we obtain

$$\frac{d}{d\epsilon}(x-z+\epsilon y, A(x-z+\epsilon y))\Big|_{\epsilon=0} = 2(y, A(x-z)) + 2\epsilon(y, Ay)\Big|_{\epsilon=0} = 2(y, A(x-z)) = 0$$

(note: for this inner product, (x, y) = (y, x) and $(x, Ay) = (A^T x, y)$, from the latter we see that if A symmetric we have (x, Ay) = (Ax, y))

Using $\nabla J_1(x) = 0$ approach:

$$\nabla J_1(x) = \nabla (x - z, A(x - z)) = \nabla (x - z)^T A(x - z) = \dots = 2A(x - z) = 0$$

(this uses $\nabla c^T x = c, \nabla x^T A x = (A + A^T) x = 2Ax$ the latter equality only if B symmetric)

Hence, from both approaches we obtain A(x - z) = 0 or Ax = Az, or in weak form: find a $x_{\mathcal{V}} \in \mathcal{V}$ s.t. $(A(z - x_{\mathcal{V}}), y) = (z - x_{\mathcal{V}}, Ay) = 0 \quad \forall y \in \mathcal{V}$. 2. minimize $J_2(x) = ||b - Ax||^2 = (b - Ax, b - Ax)$

Directional derivative approach: for y arbitrary, show

$$\left. \frac{d}{d\epsilon} J_2(x+\epsilon y) \right|_{\epsilon=0} = \left. \frac{d}{d\epsilon} (b-A(x+\epsilon y), b-A(x+\epsilon y)) \right|_{\epsilon=0} = \dots = -2(Ay, b-Ax) = 0$$

Using $\nabla J_2(x) = 0$ approach: show

$$\nabla J_2(x) = \nabla (b - Ax, b - Ax) = \nabla (b - Ax)^T (b - Ax) = \dots = 2(A^T Ax, A^T b) = 0$$

Hence, from both approaches we obtain $A^T A x = A^T b$, or in weak form: find a $x_{\mathcal{V}} \in \mathcal{V}$ s.t. $(Ay, Ax_{\mathcal{V}} - b) = 0 \quad \forall y \in \mathcal{V}$.

3. minimize $J_3(x) = \frac{1}{2}(x, Ax) - (b, x)$

Directional derivative approach: for y arbitrary, show

$$\frac{d}{d\epsilon} \frac{1}{2} (x + \epsilon y, A(x + \epsilon y)) - (b, x + \epsilon y)|_{\epsilon=0} = (x, Ay) + \epsilon(y, Ay) - (b, y)|_{\epsilon=0} = (x, Ay) - (b, y) = (y, Ax - b) = 0$$

Using $\nabla J_3(x) = 0$ approach: show $\nabla J_3(x) = \nabla \frac{1}{2}(x, Ax) - \nabla(b, x) = Ax - b = 0$ (this uses the fact that $\frac{\partial}{\partial x_i}x = e_i$, the unit vector).

Hence, from both approaches we obtain Ax = b, or in weak form: find a $x_{\mathcal{V}} \in \mathcal{V}$ s.t. $(y, Ax_{\mathcal{V}} - b) = 0 \quad \forall y \in \mathcal{V}$, which can be written (assuming z solution of Az = b) as $(Ay, x_{\mathcal{V}} - z) = 0 \quad \forall y \in \mathcal{V}$ b. We want to find $x_{\mathcal{V}} \in \mathcal{V}$ such that $(Ay, z - x_{\mathcal{V}}) = 0 \quad \forall y \in \mathcal{V}$ (see part a.1)

Suppose that \mathcal{V} is *m*-dimensional and *V* is a matrix whose columns form a basis for \mathcal{V} . Then there exists a $\hat{x}_{\mathcal{V}} \in \mathbb{R}^m$ s.t. $x_{\mathcal{V}} = V \hat{x}_{\mathcal{V}}$ and we want to find $\hat{x}_{\mathcal{V}} \in \mathbb{R}^m$ such that

$$(Ay, z - x_{\mathcal{V}}) = (Ay, z - V\hat{x}_{\mathcal{V}}) = (AV\hat{y}, z - V\hat{x}_{\mathcal{V}}) = 0, \quad \forall \hat{y} \in \mathbb{R}^m.$$

Show that that equation can be written as

$$\hat{y}^T V^T A V \hat{x}_{\mathcal{V}} = \hat{y}^T V^T A z, \quad \forall \hat{y} \in \mathbb{R}^m.$$

The latter holds for all $\hat{y} \in \mathbb{R}^m$ if and only if

$$V^T A V \hat{x}_{\mathcal{V}} = V^T A z,$$

and to solve this for $x_{\mathcal{V}}$ we only need to know the product Az, not necessarily z itself.

c. Consider the space $\mathcal{S} = \mathcal{V} \cup \text{span}\{w\}$. We want to find $x_{\mathcal{S}}$ s.t. $(Ay, z - x_{\mathcal{S}}) = 0 \quad \forall y \in \mathcal{S}$. Suppose [V w] is a matrix whose columns form a basis for \mathcal{S} .

We can write $x_{\mathcal{S}} = [V \ w] \begin{bmatrix} \hat{x}_{\mathcal{V}} \\ \hat{x}_w \end{bmatrix}$ with $\hat{x}_{\mathcal{V}} \in \mathbb{R}^m$ and $\hat{x}_w \in \mathbb{R}$, and analogously $y = x_{\mathcal{S}}$

$$\begin{bmatrix} V \ w \end{bmatrix} \begin{bmatrix} y_{\mathcal{V}} \\ \hat{y}_w \end{bmatrix}.$$

Show (similar process as in part b) that we can arrive from $x_{\mathcal{S}}$ s.t. $(Ay, z - x_{\mathcal{S}}) = 0 \quad \forall y \in \mathcal{S}$ at

$$\begin{bmatrix} V \ w \end{bmatrix}^T A \begin{bmatrix} V \ w \end{bmatrix} \begin{bmatrix} \hat{x}_{\mathcal{V}} \\ \hat{x}_w \end{bmatrix} = \begin{bmatrix} V \ w \end{bmatrix}^T A z \quad \Rightarrow \quad \begin{bmatrix} V^T A V & V^T A w \\ w^T A V & w^T A w^T \end{bmatrix} \begin{bmatrix} \hat{x}_{\mathcal{V}} \\ \hat{x}_w \end{bmatrix} = \begin{bmatrix} V^T A z \\ w^T A z \end{bmatrix}$$

where we know that $V^T A w = 0$ and $w^T A V = 0$ because w is A-orthogonal to \mathcal{V} . Hence, we are left with

$$V^T A V \hat{x}_{\mathcal{V}} = V^T A z$$
 and $w^T A w \hat{x}_w = w^T A z$,

and since we have already solved the first equation when projecting onto \mathcal{V} (in the exercise it was assumed that $x_{\mathcal{V}}$), the scalar equation that still needs to be solved is

$$w^T A w \hat{x}_w = w^T A z.$$

- d. If A not symmetric then (x, Ay) = (Ax, y) does not hold! Therefor, in the computations in part a we need to use $(x, Ay) = (A^T x, y)$. Re-do the directional derivative approach with keeping this in mind.
 - 1. Show $\left. \frac{d}{d\epsilon} J_1(x+\epsilon y) \right|_{\epsilon=0} = (x-z, A^T y) + (x-z, Ay) = 0$. Hence, minimizing $J_1(x)$ comes down to: find $x_{\mathcal{V}}$ s.t. $(x_{\mathcal{V}} - z, (A + A^T)y) = 0 \quad \forall y \in \mathcal{V}$
 - 2. Show $\frac{d}{d\epsilon}J_2(x+\epsilon y)\Big|_{\epsilon=0} = -2(Ay, b Ax) = 0$. Hence, minimizing $J_2(x)$ comes down to: find $x_{\mathcal{V}}$ s.t. $(Ax_{\mathcal{V}} b, Ay) = 0 \quad \forall y \in \mathcal{V}$
 - 3. Show $\frac{d}{d\epsilon}J_3(x+\epsilon y)\Big|_{\epsilon=0} = \frac{1}{2}(Ay, x_{\mathcal{V}}) + \frac{1}{2}(A^Ty, x_{\mathcal{V}}) (b, y) = 0$. Hence, minimizing $J_3(x)$ comes down to: find $x_{\mathcal{V}}$ s.t. $\frac{1}{2}((A+A^T)y, x_{\mathcal{V}}) (b, y) = 0 \quad \forall y \in \mathcal{V}$

Only for $J_2(x)$ does a non-symmetric matrix A result in the same problem as in case of a symmetric matrix A.

In case of non-symmetric matrix A only for $J_2(x)$ results the minimization process in a solution of Ax = b. Minimizing $J_1(x)$ and $J_2(x)$ result in a solution of $\frac{1}{2}(A^T + A)x = b$

Remark:

minimizing J_i (and therewith solving Ax = b with A a symmetric, positive definite matrix in various ways) is analogous to the different ways of solving Au = f with A a self-adjoint, coercive operator.

$\mathcal{A}u = f$	Ax = b
$\operatorname{argmin}_{v \in \mathcal{V}}(v-u, \mathcal{A}(v-u))$	$\operatorname{argmin}_{x\in\mathcal{V}}(x-z,A(x-z)) = \operatorname{argmin}_{x\in\mathcal{V}}J_1(x)$
$\operatorname{argmin}_{u \in \mathcal{V}}(\mathcal{A}u - f, \mathcal{A}u - f)$	$\operatorname{argmin}_{x \in \mathcal{V}}(b - Ax, b - Ax) = \operatorname{argmin}_{x \in \mathcal{V}} J_2(x)$
$\operatorname{argmin}_{v \in \mathcal{V}}((v, \mathcal{A}v) - 2(f, v))$	$\operatorname{argmin}_{x \in \mathcal{V}}(\frac{1}{2}(x, Ax) - (b, x)) = \operatorname{argmin}_{x \in \mathcal{V}} J_3(x)$