Book: Bifurcation Analysis of Fluid Flows
 Authors: Fred W. Wubs and Henk A. Dijkstra
 Chapter: 3, Exercise: 3.10
 Exercise author: G. Tiesinga
 Version: 1

a. 1. $J_{1}(x)=\|x-z\|_{A}=\sqrt{(x-z, A(x-z))}$ so we minimize $(x-z, A(x-z))$.

Using the directional derivative in the direction of arbitrary vector $y \in \mathcal{V}$, we obtain

$$
\left.\frac{d}{d \epsilon}(x-z+\epsilon y, A(x-z+\epsilon y))\right|_{\epsilon=0}=2(y, A(x-z))+\left.2 \epsilon(y, A y)\right|_{\epsilon=0}=2(y, A(x-z))=0
$$

(note: for this inner product, $(x, y)=(y, x)$ and $(x, A y)=\left(A^{T} x, y\right)$, from the latter we see that if A symmetric we have $(x, A y)=(A x, y))$

Using $\nabla J_{1}(x)=0$ approach:

$$
\nabla J_{1}(x)=\nabla(x-z, A(x-z))=\nabla(x-z)^{T} A(x-z)=\ldots=2 A(x-z)=0
$$

(this uses $\nabla c^{T} x=c, \nabla x^{T} A x=\left(A+A^{T}\right) x=2 A x$ the latter equality only if B symmetric)

Hence, from both approaches we obtain $A(x-z)=0$ or $A x=A z$,
or in weak form: find a $x_{\mathcal{V}} \in \mathcal{V}$ s.t. $\left(A\left(z-x_{\mathcal{V}}\right), y\right)=\left(z-x_{\mathcal{V}}, A y\right)=0 \quad \forall y \in \mathcal{V}$.
2. minimize $J_{2}(x)=\|b-A x\|^{2}=(b-A x, b-A x)$

Directional derivative approach: for y arbitrary, show

$$
\left.\frac{d}{d \epsilon} J_{2}(x+\epsilon y)\right|_{\epsilon=0}=\left.\frac{d}{d \epsilon}(b-A(x+\epsilon y), b-A(x+\epsilon y))\right|_{\epsilon=0}=\ldots=-2(A y, b-A x)=0
$$

Using $\nabla J_{2}(x)=0$ approach: show

$$
\nabla J_{2}(x)=\nabla(b-A x, b-A x)=\nabla(b-A x)^{T}(b-A x)=\ldots=2\left(A^{T} A x, A^{T} b\right)=0
$$

Hence, from both approaches we obtain $A^{T} A x=A^{T} b$,
or in weak form: find a $x_{\mathcal{V}} \in \mathcal{V}$ s.t. $\left(A y, A x_{\mathcal{V}}-b\right)=0 \quad \forall y \in \mathcal{V}$.
3. minimize $J_{3}(x)=\frac{1}{2}(x, A x)-(b, x)$

Directional derivative approach: for y arbitrary, show

$$
\begin{aligned}
\frac{d}{d \epsilon} \frac{1}{2}(x+\epsilon y, A(x+\epsilon y))-\left.(b, x+\epsilon y)\right|_{\epsilon=0} & =(x, A y)+\epsilon(y, A y)-\left.(b, y)\right|_{\epsilon=0} \\
& =(x, A y)-(b, y)=(y, A x-b)=0
\end{aligned}
$$

Using $\nabla J_{3}(x)=0$ approach: show $\nabla J_{3}(x)=\nabla \frac{1}{2}(x, A x)-\nabla(b, x)=A x-b=0$ (this uses the fact that $\frac{\partial}{\partial x_{i}} x=e_{i}$, the unit vector).
Hence, from both approaches we obtain $A x=b$,
or in weak form: find a $x_{\mathcal{V}} \in \mathcal{V}$ s.t. $\left(y, A x_{\mathcal{V}}-b\right)=0 \quad \forall y \in \mathcal{V}$, which can be written (assuming z solution of $A z=b$) as $\left(A y, x_{\mathcal{V}}-z\right)=0 \quad \forall y \in \mathcal{V}$
b. We want to find $x \mathcal{V} \in \mathcal{V}$ such that $\left(A y, z-x_{\mathcal{V}}\right)=0 \quad \forall y \in \mathcal{V}$ (see part a.1)

Suppose that \mathcal{V} is m-dimensional and V is a matrix whose columns form a basis for \mathcal{V}. Then there exists a $\hat{x}_{\mathcal{V}} \in \mathbb{R}^{m}$ s.t. $x_{\mathcal{V}}=V \hat{x}_{\mathcal{V}}$ and we want to find $\hat{x}_{\mathcal{V}} \in \mathbb{R}^{m}$ such that

$$
\left(A y, z-x_{\mathcal{V}}\right)=(A y, z-V \hat{x} \mathcal{V})=(A V \hat{y}, z-V \hat{x} \mathcal{V})=0, \quad \forall \hat{y} \in \mathbb{R}^{m}
$$

Show that that equation can be written as

$$
\hat{y}^{T} V^{T} A V \hat{x}_{\mathcal{V}}=\hat{y}^{T} V^{T} A z, \quad \forall \hat{y} \in \mathbb{R}^{m}
$$

The latter holds for all $\hat{y} \in \mathbb{R}^{m}$ if and only if

$$
V^{T} A V \hat{x} \mathcal{V}=V^{T} A z
$$

and to solve this for $x_{\mathcal{V}}$ we only need to know the product $A z$, not necessarily z itself.
c. Consider the space $\mathcal{S}=\mathcal{V} \cup \operatorname{span}\{w\}$. We want to find $x_{\mathcal{S}}$ s.t. $\left(A y, z-x_{\mathcal{S}}\right)=0 \quad \forall y \in \mathcal{S}$. Suppose $[V w]$ is a matrix whose columns form a basis for \mathcal{S}.
We can write $x_{\mathcal{S}}=\left[\begin{array}{ll}V & w\end{array}\right]\left[\begin{array}{l}\hat{x}_{\mathcal{V}} \\ \hat{x}_{w}\end{array}\right]$ with $\hat{x}_{\mathcal{V}} \in \mathbb{R}^{m}$ and $\hat{x}_{w} \in \mathbb{R}$, and analogously $y=$ $\left[\begin{array}{ll}V & w\end{array}\right]\left[\begin{array}{l}\hat{y}_{\mathcal{V}} \\ \hat{y}_{w}\end{array}\right]$.
Show (similar process as in part b) that we can arrive from $x_{\mathcal{S}}$ s.t. $\left(A y, z-x_{\mathcal{S}}\right)=0 \forall y \in \mathcal{S}$ at

$$
\left[\begin{array}{ll}
V & w
\end{array}\right]^{T} A\left[\begin{array}{ll}
V & w
\end{array}\right]\left[\begin{array}{l}
\hat{x}_{\mathcal{V}} \\
\hat{x}_{w}
\end{array}\right]=\left[\begin{array}{ll}
V & w
\end{array}\right]^{T} A z \Rightarrow\left[\begin{array}{cc}
V^{T} A V & V^{T} A w \\
w^{T} A V & w^{T} A w^{T}
\end{array}\right]\left[\begin{array}{l}
\hat{x}_{\mathcal{V}} \\
\hat{x}_{w}
\end{array}\right]=\left[\begin{array}{l}
V^{T} A z \\
w^{T} A z
\end{array}\right]
$$

where we know that $V^{T} A w=0$ and $w^{T} A V=0$ because w is A-orthogonal to \mathcal{V}. Hence, we are left with

$$
V^{T} A V \hat{x} \mathcal{V}=V^{T} A z \quad \text { and } \quad w^{T} A w \hat{x}_{w}=w^{T} A z
$$

and since we have already solved the first equation when projecting onto \mathcal{V} (in the exercise it was assumed that $x \mathcal{V}$), the scalar equation that still needs to be solved is

$$
w^{T} A w \hat{x}_{w}=w^{T} A z
$$

d. If A not symmetric then $(x, A y)=(A x, y)$ does not hold! Therefor, in the computations in part a we need to use $(x, A y)=\left(A^{T} x, y\right)$. Re-do the directional derivative approach with keeping this in mind.

1. Show $\left.\frac{d}{d \epsilon} J_{1}(x+\epsilon y)\right|_{\epsilon=0}=\left(x-z, A^{T} y\right)+(x-z, A y)=0$. Hence, minimizing $J_{1}(x)$ comes down to: find $x_{\mathcal{V}}$ s.t. $\left(x_{\mathcal{V}}-z,\left(A+A^{T}\right) y\right)=0 \quad \forall y \in \mathcal{V}$
2. Show $\left.\frac{d}{d \epsilon} J_{2}(x+\epsilon y)\right|_{\epsilon=0}=-2(A y, b-A x)=0$. Hence, minimizing $J_{2}(x)$ comes down to: find $x_{\mathcal{V}}$ s.t. $\left(A x_{\mathcal{V}}-b, A y\right)=0 \quad \forall y \in \mathcal{V}$
3. Show $\left.\frac{d}{d \epsilon} J_{3}(x+\epsilon y)\right|_{\epsilon=0}=\frac{1}{2}\left(A y, x_{\mathcal{V}}\right)+\frac{1}{2}\left(A^{T} y, x_{\mathcal{V}}\right)-(b, y)=0$. Hence, minimizing $J_{3}(x)$ comes down to: find $x_{\mathcal{V}}$ s.t. $\frac{1}{2}\left(\left(A+A^{T}\right) y, x_{\mathcal{V}}\right)-(b, y)=0 \quad \forall y \in \mathcal{V}$

Only for $J_{2}(x)$ does a non-symmetric matrix A result in the same problem as in case of a symmetric matrix A.
In case of non-symmetric matrix A only for $J_{2}(x)$ results the minimization process in a solution of $A x=b$. Minimizing $J_{1}(x)$ and $J_{2}(x)$ result in a solution of $\frac{1}{2}\left(A^{T}+A\right) x=b$

Remark:

minimizing J_{i} (and therewith solving $A x=b$ with A a symmetric, positive definite matrix in various ways) is analogous to the different ways of solving $\mathcal{A} u=f$ with \mathcal{A} a self-adjoint, coercive operator.

$\mathcal{A} u=f$	$A x=b$
$\operatorname{argmin}_{v \in \mathcal{V}}(v-u, \mathcal{A}(v-u))$	$\operatorname{argmin}_{x \in \mathcal{V}}(x-z, A(x-z))=\operatorname{argmin}_{x \in \mathcal{V}} J_{1}(x)$
$\operatorname{argmin}_{u \in \mathcal{V}}(\mathcal{A} u-f, \mathcal{A} u-f)$	$\operatorname{argmin}_{x \in \mathcal{V}}(b-A x, b-A x)=\operatorname{argmin}_{x \in \mathcal{V}} J_{2}(x)$
$\operatorname{argmin}_{v \in \mathcal{V}}((v, \mathcal{A} v)-2(f, v))$	$\operatorname{argmin}_{x \in \mathcal{V}}\left(\frac{1}{2}(x, A x)-(b, x)\right)=\operatorname{argmin}_{x \in \mathcal{V}} J_{3}(x)$

