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a. 1. J1(x) = ‖x− z‖A =
√

(x− z,A(x− z)) so we minimize (x− z,A(x− z)).
Using the directional derivative in the direction of arbitrary vector y ∈ V, we obtain

d

dε
(x− z + εy, A(x− z + εy))

∣∣∣
ε=0

= 2(y,A(x− z)) + 2ε(y,Ay)
∣∣∣
ε=0

= 2(y,A(x− z)) = 0

(note: for this inner product, (x, y) = (y, x) and (x,Ay) = (ATx, y), from the latter
we see that if A symmetric we have (x,Ay) = (Ax, y))

Using ∇J1(x) = 0 approach:

∇J1(x) = ∇(x− z,A(x− z)) = ∇(x− z)TA(x− z) = . . . = 2A(x− z) = 0

(this uses ∇cTx = c,∇xTAx = (A + AT )x = 2Ax the latter equality only if B
symmetric)

Hence, from both approaches we obtain A(x− z) = 0 or Ax = Az,
or in weak form: find a xV ∈ V s.t. (A(z − xV), y) = (z − xV , Ay) = 0 ∀y ∈ V.

2. minimize J2(x) = ‖b−Ax‖2 = (b−Ax, b−Ax)

Directional derivative approach: for y arbitrary, show

d
dεJ2(x+εy)

∣∣∣
ε=0

= d
dε(b−A(x+εy), b−A(x+εy))

∣∣∣
ε=0

= . . . = −2(Ay, b−Ax) = 0

Using ∇J2(x) = 0 approach: show

∇J2(x) = ∇(b−Ax, b−Ax) = ∇(b−Ax)T (b−Ax) = . . . = 2(ATAx,AT b) = 0

Hence, from both approaches we obtain ATAx = AT b,
or in weak form: find a xV ∈ V s.t. (Ay,AxV − b) = 0 ∀y ∈ V.

3. minimize J3(x) = 1
2(x,Ax)− (b, x)

Directional derivative approach: for y arbitrary, show

d

dε

1

2
(x+ εy,A(x+ εy))− (b, x+ εy)|ε=0 = (x,Ay) + ε(y,Ay)− (b, y)|ε=0

= (x,Ay)− (b, y) = (y,Ax− b) = 0

Using ∇J3(x) = 0 approach: show ∇J3(x) = ∇1
2(x,Ax)−∇(b, x) = Ax− b = 0 (this

uses the fact that ∂
∂xi
x = ei, the unit vector).

Hence, from both approaches we obtain Ax = b,
or in weak form: find a xV ∈ V s.t. (y,AxV − b) = 0 ∀y ∈ V, which can be written
(assuming z solution of Az = b) as (Ay, xV − z) = 0 ∀y ∈ V
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b. We want to find xV ∈ V such that (Ay, z − xV) = 0 ∀y ∈ V (see part a.1)

Suppose that V is m-dimensional and V is a matrix whose columns form a basis for V.
Then there exists a x̂V ∈ Rm s.t. xV = V x̂V and we want to find x̂V ∈ Rm such that

(Ay, z − xV) = (Ay, z − V x̂V) = (AV ŷ, z − V x̂V) = 0, ∀ŷ ∈ Rm.

Show that that equation can be written as

ŷTV TAV x̂V = ŷTV TAz, ∀ŷ ∈ Rm.

The latter holds for all ŷ ∈ Rm if and only if

V TAV x̂V = V TAz,

and to solve this for xV we only need to know the product Az, not necessarily z itself.

c. Consider the space S = V ∪ span{w}. We want to find xS s.t. (Ay, z − xS) = 0 ∀y ∈ S.

Suppose [V w] is a matrix whose columns form a basis for S.

We can write xS = [V w]

[
x̂V
x̂w

]
with x̂V ∈ Rm and x̂w ∈ R, and analogously y =

[V w]

[
ŷV
ŷw

]
.

Show (similar process as in part b) that we can arrive from xS s.t. (Ay, z−xS) = 0 ∀y ∈ S
at

[V w]TA[V w]

[
x̂V
x̂w

]
= [V w]TAz ⇒

[
V TAV V TAw
wTAV wTAwT

] [
x̂V
x̂w

]
=

[
V TAz
wTAz

]
where we know that V TAw = 0 and wTAV = 0 because w is A-orthogonal to V. Hence,
we are left with

V TAV x̂V = V TAz and wTAwx̂w = wTAz,

and since we have already solved the first equation when projecting onto V (in the exercise
it was assumed that xV), the scalar equation that still needs to be solved is

wTAwx̂w = wTAz.

d. If A not symmetric then (x,Ay) = (Ax, y) does not hold! Therefor, in the computations
in part a we need to use (x,Ay) = (ATx, y). Re-do the directional derivative approach
with keeping this in mind.

1. Show d
dεJ1(x + εy)

∣∣∣
ε=0

= (x − z,AT y) + (x − z,Ay) = 0. Hence, minimizing J1(x)

comes down to: find xV s.t. (xV − z, (A+AT )y) = 0 ∀y ∈ V

2. Show d
dεJ2(x+ εy)

∣∣∣
ε=0

= −2(Ay, b−Ax) = 0. Hence, minimizing J2(x) comes down

to: find xV s.t. (AxV − b, Ay) = 0 ∀y ∈ V

3. Show d
dεJ3(x + εy)

∣∣∣
ε=0

= 1
2(Ay, xV) + 1

2(AT y, xV) − (b, y) = 0. Hence, minimizing

J3(x) comes down to: find xV s.t. 1
2((A+AT )y, xV)− (b, y) = 0 ∀y ∈ V

Only for J2(x) does a non-symmetric matrix A result in the same problem as in case of a
symmetric matrix A.
In case of non-symmetric matrix A only for J2(x) results the minimization process in a
solution of Ax = b. Minimizing J1(x) and J2(x) result in a solution of 1

2(AT +A)x = b
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Remark:
minimizing Ji (and therewith solving Ax = b with A a symmetric, positive definite matrix in
various ways) is analogous to the different ways of solving Au = f with A a self-adjoint, coercive
operator.

Au = f Ax = b

argminv∈V(v − u,A(v − u)) argminx∈V(x− z,A(x− z)) = argminx∈VJ1(x)

argminu∈V(Au− f,Au− f) argminx∈V(b−Ax, b−Ax) = argminx∈VJ2(x)

argminv∈V((v,Av)− 2(f, v)) argminx∈V(12(x,Ax)− (b, x)) = argminx∈VJ3(x)
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